NAVAL POSTGRADUATE SCHOOL
Monterey, California

FRAMEWORK FOR MANAGING METADATA SECURITY
TAGSASTHE BASIS FOR MAKING SECURITY DECISIONS
by
Panagiotis Aposporis
December 2002

Thesis Advisor: Ted G. Lewis
Second Reader: Timothy E. Levin

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collect ion of information is estimated to average 1 hour per response, including the time
for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and
reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington headquarters Services,

Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704 -0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
December 2002 Master’'s Thesis

4. TITLE AND SUBTITLE: Framework for Managing Metadata Security |5. FUNDING NUMBERS
Tags as the Basis for Making Security Decisions.

6. AUTHOR(S) Aposporis, Panagiotis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND 10. SPONSORING/MONITORING

ADDRESS(ES) AGENCY REPORT NUMBER
N/A

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution unlimited

13. ABSTRACT (maximum 200 words)

This thesis presents an analysis of a capability to employ CAPCO (Controlled Access Program Coordination
Office) compliant Metadata security tags as the basis for making security decisions. My research covers all the security
aspects of the related technologies, such as XML, Web Services, Java API's for XML, .NET Architecture to help
determine how security conscious enterprises such as the Intelligence Community can implement this approach in the real
insecure world, with commercial off-the-self products, to meet their needs. There were many concerns about using the
XML Metadata Label Tags as the basis for making security decisions, due to an un -trusted environment. By using
appropriate trusted parts, when really necessary, and new technologies, we can find secure solutions for creating, storing
and disseminating XML documents.

Besides the theoretical research, this thesis also presents a prototype development of a Web Service that can
handle most of the tasks (save, save locally, review etc), which are required to securely manage XML documents. In order
to implement the above Web Service, open-source products, such as Java and Apache Tomcat Web Server, are used.
These are not only available free, easily testable and commonly used, but they pro vide us with a great interoperability
among almost al the platforms. The implementation can also be done by using other competitive technologies or
platforms or can even use similar or related commercial products.

14. SUBJECT TERMS Metadata, Web Service, XML, XSL, DTD, Schema, SAX, Security | 15. NUMBER OF
Policy, XML Editor, XML Parser, Validate, Security Attributes, Labels, Objects. PAGES
288
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS | CLASSIFICATION OF ABSTRACT
REPORT PAGE OF ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution isunlimited

FRAMEWORK FOR MANAGING METADATA SECURITY TAGSASTHE
BASIS FOR MAKING SECURITY DECISIONS

Panagiotis Aposporis
Magjor, Hellenic Air Force
B.S., Hellenic Air Force Academy, 1989

Submitted in partia fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

December 2002
Author: Aposporis Panagiotis
Approved by: Ted G. Lewis
Thesis Advisor

Timothy E. Levin
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

This thesis presents an anadysis of a capability to employ CAPCO (Controlled
Access Program Coordination Office) compliant Metadata security tags as the basis for
making security decisions. My research covers al the security aspects of the related
technologies, such as XML, Web Services, Java API’s for XML, .NET Architecture to
help determine how security conscious enterprises such as the Intelligence Community
can implement this approach in the rea insecure world, with commercial off -the-self
products, to meet their needs. There were many concerns about using the XML Metadata
Label Tags as the basis for making security decisions, due to an un-trusted environment.
By using appropriate trusted parts, when really necessary, and new technologies, we can
find secure solutions for creating, storing and disseminating XML documents.

Besides the theoretical research, this thesis also presents a prototype development
of aWeb Service that can handle most of the tasks (save, save locally, review etc), which
are required to securely manage XML documents. In order to implement the above Web
Service, open-source products, such as Java and Apache Tomcat Web Server, are used.
These are not only available free, easily testable and commonly used, but they provide us
with a great interoperability among almost al the platforms. The implementation can also
be done by using other competitive technologies or platforms or can even use similar or
related commercial products.

THISPAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

DEFINITION OF THE PROBLEM ...ttt e 1
A. INTRODUCTION. ...ttt e e 1
1. Background.........ccooiiiiiiiii e 1

B. BRIEF OVERVIEW OF THE SAIC — IC XML WORKGROUP
FINAL REPORT ..o 2
1. Content Manipulationccuvuiieiiiiiieeeee e 2
2. 1000 g1 (= 01 S (o =0 =SSP 3
3. CONLENE DEIIVENY...vviiiiiii e e e e e e eeeees 3
4. CONCIUSIONS. ...ttt bbb e 4

C. DESCRIPTION OF THE PROBLEM AND A PROPOSED
APPROACH ... e e 4
D. OUTLINE .ottt ettt 9
CURRENT STATE OF SECURITY IN XML - METADATA ..o, 11
A. DEFINITION OF THE TERMS.....coooiiiiiiiee e, 11
1 XML, XSL and SCHEMA ...t e 11
2. I = o = L VP 12
3. SOAP and WED SErVICES.ccivviiieeeeiiee e 14
4. CORBAL . ..ttt bbbt bbb e e 15

B. SURVEY OF SECURITY ISSUES IN RELATED TECHNOLOGIES
AND RESEARCH LITERATURE SURVEYcooiiiiiiiiiiiii e 16
1. W S-SECUIILY wovvueiei e e e e e 16
2. Microsoft’s NET Framework Securitycccceevveveeeeievnininnnnnn. 18
a. INErOAUCHION. ...ttt 18
b. Code ACCESS SECUNLY.....ccvvveiiiiiii e e e 19
C. Role-based SECUNItY........coeeevieeieiiiiies e e 20
3. B V7= B = o U) P 21
a. INErOOUCHION. ...t 21
b. BasiC CONCEPLS......evvvnniieieeeeieieeeiiiceeeeeeiein s e e e eeeeeenes 22
C. New Enhancements of the Java 2 SDK...........cccccuvvvivnnnnns 23
4 COM & DCOM ...uiiiiiiiiiiiiiiiiieeieeeeeeee bbb eeeeeeeeeeaees 24
a INErOUCHION. ... e 24
b S o T | 1Y 25
C. IC METADATA STANDARD FOR PUBLICATIONS..........ccccciinennee 26
DBMSARCHITECTURES. ... e s 29
A. OVERVIEW OF THE BASIC SECUREDBMSccoovvvvviieieeeeeen, 29
1 Historical Background.............cooeuuuiiiiiiinieee e 29
2. Woods Hole ArcChiteCtur €Soovvvveiieieee e e 30
3. Trusted Subject ArchiteCtures..........cooovvviiiiiiiiiiec e 32
B. ANALYSISAND REQUIREMENTS OF DBMS ARCHITECTURES.. 33
1 BaSiC REQUITEMENTS......uuiiii e e 33

Vii

2. XML and DBM S ArchiteCtUr€S.....cuvvveiiieeieeie e 35

C. RESEARCH ON RELATED DBMSPRODUCTScccoooeiiiiiiiiinne 38
1 OraClE ... 38
2. IBM DB2 Universal Database V7.......ccccceeeeiiii 40
3. Sybase Adaptive Server Enterprise (ASE) 125........cccceeeeenennn. 42
D. THREE-TIER ARCHITECTURE........cttiiiiiiiiiiiiiiiiec e 44
IV, IMPLEMENTATION. .. ctttitiiiiiiiiiiiie ittt ittt ettt e e bbb 47
A. SECURITY ARCHITECTURE OF THE PROTOTYPE
DEVELOPMENT ..o 47
1 gLl [V T o] o [P 47
2. SECUNItY POlICIES. ..ceevviiiiiie et e 49
B. STRUCTURE OF THE PROTOTYPE DEVELOPMENTccvvue.... 50
1. T T o = VP 50
2. Description of System’s L ogic—Flow Diagrams........................ 50
3. Analysisof theJava SErVIELScooeiiiiiiiii e, 58
a. LOGIN.CIASS......coiiiiiiiiie e e 58
b. USErOPtioNS.ClAaSS.....uuuiii e eeiicceeiiiee e e e e e e e eeanns 58
C. UserSElection.Classooveeeeeeveeeecee e 59
d. IMPOrtTOSAVE.CIASS.vvvveiii i 59
e SAVEFIIE.CIaSS. ..o 59
f. UpdateDbh.Class........uvuuiiiiie e e e e 61
g. OPENFIIECIAsS.....uvuii i 61
h. IMPOrtFIlE.Class........cccvviiiiiiii e 62
i. FIindUILCESS ...ttt e 62
i (0o o0 e = 1 P 63
V. EXPERIMENTATION ...ttt e e 65
A. DEMONSTRATION SCENARIOS ..o, 65
1 INtrOdUCLION ..o 65
2. Scenario 1 —Internal User Storesa Document to the System 65
3. Scenario 2 — Internal User Retrieves a Document from the
SYSLEITI ..t e 68
4. Scenario 3 — External User Retrieves a Document from the
SEBIMN e 71
B. SUBJECTIVE PERFORMANCE EVALUATION.....ccvvvvviiiiiiiiiiieeenn. 74
C. CONCLUSIONS - LESSONSLEARNEDcccvvvviiiiieieeeeeeieieieeeeeeee 75
APPENDIX A. APPLICATION PROGRAMMING INTERFACE (API) 77
Package dbSECLIONoouiiiiiiii 78
Hierarchy for Package dbSection ... 80
APPENDIX B. JAVA CODEcoiiiiiiiiiiiiiiieee et 175
LIST OF REFERENCEScutitiiiiiiiiiiiiiiiiiie ittt ee et eeeeaineabbneeeeseeeees 269
INITIAL DISTRIBUTION LIST ..uuiiititiiiiiiieiiiiiieieieeeeiiiiiiiibiebbesbsbeeeeseeeeee sennaees 273

Vil

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.

LIST OF FIGURES

Basic Proposed ArChiteCtUre............oovvviviiiiiii e 6
Server Side Proposed ArChit ECLUrE.........ovveeeeeiiieeee e 7
(O IT= g 00 T LSRR 8
WS SECUNLY SUMMIAIY.....cceiiiiiiiiiie i e eeeee et e e e e e ee e 17
Kerndizead DBMS.......coooiiiiiii 30
Distributed DBMS ..o 31
Cryptographic Integrity LOCK DBMSccoovviiiiiiiii e 32
Trusted Subject ArChitECIUNESvvveiii e 33
Security ArChitECtUrE.........uuiii i e e e e eeaes 47
LOgin FIOW Diagraimccuvveeiiiieeeeeeeeeeiiit e eeeeeeeaes s s e e e e e e e eeeaaen e aeeeeeees 51
Main Menu FlOW Diagramcoovvveeeiiiiiiiese e i e e e e 52
Save to Database FIOW Diagram.........ccooeveeeieieeeeiiiiin e eeeeeeeeees 54
Open File FlOW DiagraM..........coeviiveeeiiiiieieeee e e e e e e e eeeeeenenen e enee 55
Open from Externd Database Flow Diagram..........cccoevvveeeviiveeiiiineennnnnnns 56
(0o 1 IS o = o 65
First Option inthe Main MenU...........oouuuiiiiiiiieee e 66
Browse Local File SyStem........ccoooviiiiiiiiiieieeee s 67
Uploading and Parsing Fil€@ ProCESSueviiiieeiiiieiic e 67
Second Option inthe Main MenUcooooiiiiiiiiiiiiii e 68
Available FIESTO OPEN.....cooieiiiiiiii i e e 69
Choose an EditOr SCremN ... coi i 69
XMLMind Editor Opened the Filecooiiiiiiiiiiii e 70
Applet Based Editor Opened the Fle..........uvveiiiiiiiiiiii i, 71
Third Option iN the Main MENU.........coiiiiiiiiiiiiiiii e 72
Choose an Associated SErVEr SCrEEN........oooviiiiiiiiiiie e e 72
Available Files on an ASSOCIEed SEIVESueeiiiieeeiiieieiiii e 73

THIS PAGE INTENTIONALLY LEFT BLANK

ACKNOWLEDGMENTS

I would fke to thank Dr. Cynthia Irvine for introducing me to the field of
computer security and for her professional guidance and direction during the entire length
of my studies at the Naval Postgraduate School. | would aso like to thank my Thesis
advisors Ted Lewis and Tim Levin for their guidance, support and patience. Their
experience and expert knowledge inspired me to reach beyond my previous limits and
capabilities. | am aso grateful to Ron Russell, my English editor, for his support, patient
and excellent corrections. In addition, | sincerely thank the Hellenic Air Force General
Staff for sponsoring me for this course and the entire faculty and staff at the Naval
Postgraduate School for helping me successfully completes the curriculum.

Last but certainly not least, | am indebted to my loving family, my lovely wife
Haroula, and my wonderful children, John and Dina, who provided me with unlimited
support and love during this research. Without their support, none of my

accomplishments would have been possible.

Xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

l. DEFINITION OF THE PROBLEM

A. INTRODUCTION

1. Background

The eXtensible Markup Language (XML) is atext and data-formatting language
that has a tag-based syntax very similar to the Hyper Text Markup Language (HTML)
syntax, but much more capable and much more flexible. It not only prescribes text styles
but also defines data types for cross platform communication. XML documents contain
only data, so applications that process XML documents must decide how to display the
document’s data. For example a Personal Digital Assistant (PDA) may render an XML
document differently than a wireless phone or a desktop computer would render that

document.

XML permits document authors to create “markup” for virtually any type of
information. Markup is notation that provides information to an XML parser on how to
parse, or read, an XML document; which parts of a document to skip; and which parts of
a document to hand off to another application. Consequently, this extensibility enables
document authors to create entirely new markup languages for describing specific types
of data, including mathematical formulas, chemical molecular structures, music etc.
Based on that powerful capability, the Intelligence Community (IC) recently began
studying XML and its potential use as the main technology to create, manage and

disseminate intelligence’ s content.

At the end of 1999 a Fina Report [24] was prepared under the direction of the
Office of Advanced Analytical Tools (AAT) (Department of the Central Intelligence
Agency), by the Science Applications International Corporation Applied Content
Technologies Team (SAIC) for the IC XML Study Group. The purpose of that report was

to present the findings of the development of a prototype with
emphasis on the technical highlights, advantages, disadvantages
and shortfalls of utilizing XML for production, storage and
dissemination of intelligence data. Additionaly it provides

recommendations for utilizing XML technology in the Intelligence

Community.

The findings of that report as concerns the applicability of the XML to the
Intelligence’'s Community documents were encouraging and highly promising for the
future. More specifically, the XML was found well suited for creating, managing and
disseminating the intelligence content. XML provides several solutions to the form of
authoring, manages highly granular level data from many different sources, and finally
enables the dissemination of user specific views and of data based on target security
domain. Even though this report was published about three years ago and much has
changed in the related technologies, it contains many concepts worthy of mentioning and

analyzing.
B. BRIEF OVERVIEW OF THE SAIC — IC XML WORKGROUP FINAL
REPORT

1. Content Manipulation

The proposed Content Manipulation in the IC XML Workgroup Final Report [24]
has two distinct sub-functions. the authoring environment, and the comment/review
process. In the authoring environment, the analyst can use an XML editor to create an
XML document based on the rules in a Document Type Definition (DTD). This DTD
provides the structure and the business rules that must be followed as the XML content is
created. The interactive parser is responsible for validating the XML instances cr ested in
this environment and to provide avalid XML document. There is also a potential use of a
non-XML editor, which can create “ structured” documents, using formatting styles from
templates that are generated from the DTD. Due to the large number of powerful, and in
most cases, free XML editors that have been developed, non-XML editors will not be
analyzed further in this document. The main feature that the XML Editor can provide is
that it can interface with the dissemination/delivery environment by serving as an on-call
editor that can be called directly from aweb browser.

In the second function, which was called the “comment/review process,” a
potential reviewer outside the authoring environment can access, review and comment on
the content of an XML document. It was also suggested that the process be done via a

web browser, not only the whole document but its fragments, and the comments of the

2

reviewer be stored as custom attributes and maintained in the content repository, separate
from the original document, which allows many reviewers to provide comments without
altering the origina document.

2. Content Storage

The content storage mechanism is separated into three functional areas. a) the
content management system, b) a content repository and c) all other internal and external
sources. The content management system must enable genera document management
capabilities, such as security, access control, check in/out and version control history. In
addition, this system will provide the interface through which the XML editor accesses
the repository, and the users manage and reuse the document components. The system
aso controls the access to documents in the repository for services such as
comment/review and modifying documents.

The main component of the content storage is an object-oriented database, which
is controlled by the management system. An object-oriented database is preferred asit is
better suited for hierarchical structures, such as those typically produced by XML. This
content repository is used to house the XML content at a very granular level while
alowing for check-in, checkout and versioning of the content. It is also very
advantageous for that object-oriented database to be able to connect to other data sources,
especidly relational databases.

3. Content Delivery
The content delivery functional area consists of three basic parts:

= domain filtering,
= interna user functions, and
= externa user functions.

The production management, staff and the authors or anaysts are the internal userswho
create and distribute the intelligence documents stored in the content repository. Anyone
else who is outside the production environment and who does not contribute directly to
the production of the distributed content is the external user. External user functions
include search and retrieval of distributed content and external repositories and the
capability to capture distributed content locally.

3

The main part of the content delivery is the domain filter, which consists of
scripting filters designed to separate XML instances into various versions based on
security classification metadata. When an XML document is exported from the database,
the data is processed through the appropriate filter and distributed accordingly.

For both internal and external users, the necessary functions are provided through
a Web browser interface of various pages that are based on user profiles and security
access privileges. When the IC XML Study Group published their report the XML was a
new work in progress and so the technologies to develop, distribute and browse XML
contents was limited. Consequently, the authors were forced to transform the XML
documents into HTML using XSL style sheets and to send them as styled HTML to the
end user.

4. Conclusions

Clearly, security will dways be a major factor in the IC, currently and in future
environments. The |IC XML Study Group report correctly concluded that nothing in XML
inherently prohibits its use in the current security environment. Moreover, it also has a
great capability to attach security attributes to granular elements. This capability is much
more powerful than those in HTML documents. In addition, if the security markings are
stored as attributes rather than actua content, then changing markings guides is only a
matter of changing style sheetsrather than content. Security markings are agreat example
of why XML is better than HTML for storage of intelligence content.

Generaly speaking, XML shows great applicability by providing a vendor -
neutral, non-proprietary format for exchanging content, which enables better
communications among the members of the IC and strives for better interoperability with
its customers.

C. DESCRIPTION OF THE PROBLEM AND A PROPOSED APPROACH

Among the main goals of the prototype that the IC XML Study Group's_report

was trying to achieve was to suggest a combination of

the latest and best commercia-off-the-self XML technology and
explore and develop this technology into a system that alows users

to author, store and disseminate disparate types of data in XML
format.

Some of the “latest and best” products of that period were examined and some
testing was done mainly trying to prove that al could work together and could provide
the desired results. Even though each of those products was really among the best of all
the others within the same functional family, many problems and difficulties existed
when they had to cooperate with each other. Furthermore, the XML technology was not
very mature and fully developed at that period. This made their job much more difficult
because everything had to be converted to HTML in order to be processed and delivered.

Besides the above functional and operational factors, another major problem was
the lack of security of the whole process because most of the ele ments used or proposed
were commercial non-open source products. In addition, there were security concerns
regarding the XML documents themselves during their storage or dissemination as well
as when the system must decide if a document is releasable to a user and to what extent
(the entire document or just paragraphs). Thereis of course a general reference for those
“domain filters’ that must “separate XML instances into various versions based on
security classification metadata.” There is aso a genera reference for these functions
(comment/review, print save locally) that must be provided through a Web browser
interface, but the report also states “the current status of XML as awork in progress, the
software support to develop, distribute and browse XM L content is limited.”

Recently much has changed, so the new technologies can work in a distributed
environment with the maximum interoperability. One of the major changes was the XML
technology, which became more mature and every day more and more vendor s and
developers chose it asthe base of their applications. Moreover, the XML isintegrated and
isimproved in a new technology called XML Web Services. The real power of the XML
Web Services is that it lets gpplications share data and invoke capabilities from other
applications without regard to how those applications were built. XML is also
independent and can work with any operating system or platform they run on and any

devices are used to access them. While XML Web Services remain independent of each

other, they can loosely link themselves into a collaborating group that performs a
particular task.

The approach proposed in this thesis is to use a Web Service as the manager,
which uses the enormous capabilities of the XML in conjunction with its Metad ata L abel
ags as the base to make the required security decisions. In that way, we obtain al the
advantages of the XML and the Web Services as well as maintaining the existing systems
or applications due to the fact that both XML and Web Services are completely
independent of the other parts of the entire system. There is a serious security concern for
those Metadata Label Tags and how they can be trusted in the real world's insecure
Internet environment. By using some of the widely used secure solutions (like SSL, TCB,
DBMS), we can build a fully functiona, interoperable and virtually secure system for use
by any large-scale enterprise. The proposed architecture is shown in Figure 1.

|- [l:lD
Enclave B e
Enclave A I _
HEI L]
HI:I | 4]

‘]

Figurel. Basic Proposed Architecture
The main idea, as shown in Figure 1, consists of a number of enclaves, which are
interconnected through the Internet using any of the common protocols, such as Hyper
Text Transfer Protocol (HTTP) or its secure version (HTTPS). Over the HTTP or
HTTPS a relatively new protocol, caled Simple Object Access Protocol (SOAP) is
running, which can be roughly described as a combination of HTTP, XML and the

Remote Procedure Calls (RPC). Any of the usual technologies that have been used o far,
6

for authorization and authentication, between the enclaves can be used without affecting

the main logic or operation of the system.

In every enclave, the XML Web Service is running on a dedicated Web Server,
which of course can be any of the common commercia ones or a modified open-source
server. The main tasks of this Web Service can be divided into three main categories. The
first oneis the Authentication and Authorization of a potential client, which can aso be a
single user or another Web Service, running on aWeb Server in one of theinterconnected
enclaves. The second category consists of the tasks that the system must perform when
the client wants to work on an XML document that is stored in its local database. That
means a direct communication with the local Database Management System (DBMYS)
must be established so the desired documents are accessible. The last category includes
all the tasks that must be performed when the client wants to access an XML document
that is stored outside of its own database. In that category, a connection with the
appropriate Web Service in the specific server of the enclave must be established, using

the protocols mentioned before.

P

Server

3
pem— Local
Client

Figure2. Server Side Proposed Architecture
The most common solution to interface with the Web Service is by using any
browser. Since most people are familiar with browsers nowadays, no special training is
required. Interaction between the user and the system is done through appropriate pages
that are generated dynamically by the Web Service according to the user’'s choices and
the enforced policy. Since no special features from the browser are needed, a commercia

off-the-self product can be used or a“hand-made”’ open source instance can also be used.
7

When the user, via a Web browser, accesses an XML document, an XML Editor must be
used to handle the document itself. This system has enormous flexibility and
interoperability because the user’s choice of editor has no restrictions and can be either a
commercial off-the-self product or an open source. For content creating tasks, the editor
may aso parse and check each document to determine if it is valid according to the
Intelligence's Community XML DTD (Document Type Definition) for Security
Markings. The same checking is aso done on the server side before data is accepted.
Recently that DTD has under gone a complete change and has been renamed “DED (Data
Element Dictionary) for the IC security attributes.” An overview of that DED can be
found in the following chapters of this paper.

_ 1. Browser
2XML Editor Comneted to the Saver of Its
O Acat
[

=

Figure3. Client Side

A Web Service can be written in any of the common languages (e.g. Java, C++,
Visual Basic) by utilizing any of the new technologies, such as the Microsoft's“. NET”
framework, or the Sun’s Java WSDP (Web Service Development Package). When there
isaneed for a high assurance system, which also has to be expandable and interoperable,
using technologies that are open source is preferable so that they can be tested and their
security can be verified either by using formal or non-forma methods. For that reason,
Sun’s Java WSDP has an advantage over other t echnologies and has already been used by
other mgjor vendors (IBM, Oracle) as the base for their applications or development
toals.

In my implementation, Sun’s Java WSDP is used as the framework to implement
the Web Service because Java APIs for XML alow usto write our applications entirely
8

in the Java programming language, thus taking advantage of the large number of the
features this language provides. Besides being an open source free technology, the most
important features of the Java APIs for XML ar e that they al support industry standards,
thus ensuring interoperability. Various network interoperability standards groups, such as
the World Wide Web Consortium (W3C) and the Organization for the Advancement of
Structured Information Standards (OASIS) have defined standards so that businesses that
follow these standards can make their data and applications complementary.

Another feature of the Java APIs for XML is that they alow a great deal of
flexibility. Users have flexibility in how they use the APIs. For example, JAXP (Java AP
for XML Processing) code can use various tools for processing an XML document, and
JAXM (Java APl for XML Messaging) code can use various messaging protocols on top
of SOAP. Implementers have flexibility as well. The Java APIs for XML define strict
compatibility requirements to ensure that al implementations deliver the standard
functionality, but they aso give developers a great deal of freedom to provide
implementations tailored to specific uses like those for the Intelligence Community.

D. OUTLINE

The remainder of this paper is organized as follows. Chapter Il. “ Current State of
Security in XML — Metadata’ describes the terms and the current state of the security in
many of the new technologies aswell asthe main points of the IC Metadata Standards for
Publications. Chapter 111 “Metadata DBMS Architectures’ refers to the basic secure
architectures, to a proposed architecture appropriate for metadata, and to the concepts that
have aready been implemented by some of the most specialized vendors. In Chapter IV
“Implementation (Prototype Development)” areview of the 3-tier architecture is made, as
wel as a complete analysis of the Java classes being used, aong with their relations.
Chapter V, “Experimentation,” concernsthe testing of the system with different cases and
also describes the lessons learned and future work that could be done. Finally Appendix I,
completely documents the classes used as the official “javadoc” tool of the Java
programming Language produces and Appendix Il presents a complete listing of the
code.

10

[I. CURRENT STATE OF SECURITY IN XML - METADATA

A. DEFINITION OF THE TERMS

1. XML, XSL and SCHEMA

XML is asubset of the Standard Generdized Markup Language (SGML) defined
in ISO standard 8879:1986 that is designed to make it easy to interchange structured
documents over the Internet. XML files always clearly mark the beginning and end of
each of the eements of an interchanged document. XML restricts the use of the SGML
constructs to ensure that fallback options are available when access to certain components
of the document are not currently possible over the Internet. With XML, we can use any
tags we want, and the browser does not automatically understand the meaning of these
tags. For example the tag <body> could mean an HTML text body or perhaps the human
body in amedica article. Because of the nature of XML, no standard way to display an

XML document exists.

In order to display XML documents, having a mechanism to describe how the
document should be displayed is necessary. One of these mechanismsis Cascading Style
Sheets (CSS), but the eXtensible Stylesheet Language (XSL) is the preferred style sheet
language of XML. In addition XSL is far more sophisticated than the CSS used by
HTML. XSL consists of two parts, a method for transforming XML documents and a
method for formatting XML documents. As an example, we can think of XSL as a
language that can transform XML into HTML, a language that can filter and sort XML
data, and a language that can format XML data, based on the data value, like displaying
negative numbers in red. XSL can be used to define how an XML file should be
displayed by transforming the XML file into aformat that is recognizable to a browser.
Normally XSL does this by transforming each XML element into an HTML element
because HTML is a browser recognizable format. XSL can aso add completely new
elements into the output file, or can remove elements. It can rearrange and sort the

elements and test and make decisions about which elements to display, and alot more.

An XML document optionally can reference another document that defines that

XML document’s structure. This referenced document is either a Document Type

11

Definition (DTD) or a Schema. A DTD expresses the set of rules for the document
structure using an Extended Backus-Naur Form (EBNF) grammar. Unlike DTDs,
Schemas do not use EBNF grammar. Instead they use XML syntax and are actualy XML
documents that programs can manipulate like other XML documents. Sc hemas are more
flexible and more powerful than DTDs, and many researchers in the XML community
believe that Schemas will prevail over DTDs. When an XML document references a
DTD or Schema, some parsers, which are aso called validating parsers, can read the
DTD or the Schema and check the XML document according to the structure that the
DTD or Schema defines. If the XML document conforms to the DTD/Schema, then the
XML document is “vaid.” Those parsers that cannot check for document conformity
against DTD/ Schemas are called non-validating parsers. If an XML document can be
processed successfully by a validating or a non-validating parser, which means that the
document is syntacticaly correct, then that document is caled “wel formed.” By
definition, a valid XML document is also well formed.

2. M etadata

A common short definition of metadata is that it is “data about data.” Actually,
metadata can be data about almost anything. What makes it metadata is its purpose and
usage rather than its content or structure. Most often, metadata is designed to support
people or programs in locating and retrieving information resources. A piece of data can
be metadata to one application, and just datato another. Metadataisrelatively short, hasa
simple structure, and is so familiar that one may not realize that he or she uses metadata
every day. The most common example is when using a collection of tapes or CDs. If al
of them were in blank boxes, and one had to play each of them to see what was recorder
on it, then finding a particular film or track would be along and difficult job. However, if
one places alabel with the name of the tape or the CD and alist of the songs on each of
them, then picking out the right one immediately becomes very much easier. Extending
this example to a large library or the World Wide Web, the problem of finding exactly
what you are looking for is clearly enormous, but the basic concept of the solution
remains the same. Make some simple, relevant, searchable information available,

together with location information, and searching and retrieval becomes much essier.

12

Unfortunately, when the information pool is very large, alarge number of relevant results

can be found, which must be filtered and ranked according to the specific user’s needs.

XML metadata can take many different forms. It may be embedded in an XML
document alongside the information it is about, or it may be held in a separate XML
document. In the second case the XML metadata could identify which information it is
about by using, for example, a Unified Resource Identifier (URI). In order to understand
better the breadth of metadata some examples of different kinds are presented below:

» Annotation: These are side notes added to a document for a specific
purpose, and they will be read by some or by al of the readers but at

different times and for different purposes.

» Cataloguing and Identification: In this kind of metadata there is an
association between specific properties and their values with whatever the
metadatais about. For example, amusic store catalogue record for amusic
CD, gives its title, singer and publisher. In XML applications, this
metadata is usudly information about the properties of information
resources, leading to the general name “resource based metadata.”

» Qubject Indexes. This refers to metadata that represents subjects and their
interrelationships, and also usualy designates specific information
resources as belonging to these subjects. A closely related kind of
metadata is the already mentioned example with the tapes and CDs. Those
kinds of metadata are usually referred to as “ subject based metadata.”

» Cross-references. These are an important kind of metadata for long-lived
collections of documents where documents are often cross-referenced in
ways their origina authors did not foresee. In complex independent
collections, such as lega codes and cases, cross-references become
structural mapping.

In practice, most technologies include aspects of both resource based and subject
based metadata. This is partly because if you want to represent a subject inside a

computer, you will probably end up doing so either by identifying the subject with an

13

information resource such as a thesaurus entry or by using a name for the subject as a
value of a property. In the music store example, the catalogue record can also give extra
information for each song contained in it. Moreover, if you have many resources with
properties, you will want to control and structure which properties are used, how they
relate to each other, and which of them will take on alife of their own.

3. SOAP and Web Services

SOAP stands for the Simple Object Access Protocol. SOAP is based on XML and
describes a messaging format for machine-to-machine communication. SOAP provides a
simple and lightweight mec hanism for exchanging structured and typed information
between peers in a decentralized, distributed environment using XML. SOAP does not
itself define any application semantics, such as a programming model or implementation
specific semantics; rather it defines a simple mechanism for expressing application
semantics by providing a modular packaging model and encoding mechanisms for
encoding data within modules. This allows SOAP to be used in alarge variety of systems
ranging from messaging systems to Remote Procedures Call (RPC). SOAP consists of
three parts. a) the SOAP envelope construct defines an overall framework for expressing
what isin a message, who should ded with it, and whether it is optional or mandatory, b)
the SOAP encoding rules define a serialization mechanism that can be used to exchange
instances of application-defined data types, and ¢) the SOAP RPC representation defines
a convention that can be used to represent remote procedure cals and responses.
Although these parts are described together as part of SOAP, they are functionally
orthogonal. In particular, the envelope and the encoding rules are defined in different

namespaces in order to promote simplicity through modularity.

Web services, as their name implies, are application services offered via the Web.
In atypical Web services scenario, a business application sends arequest to aservice a a
given URL using the SOAP protocol over HTTP. The service receives the request,
processes it, and returns a response. One of the most common examplesis that of a stock
quote service, in which the request asks for the current price of a specified stock, and the
response gives the stock price. Thisis one of the smplest forms of a Web service in that
the request isfilled almost immediately, with the request and response being parts of the
same method call. Web services and consumers of Web services are typically businesses,

14

making Web services predominantly business-to-business (B-to-B) transactions.
Although .NET and other initiatives are designed to provide server-resident applications
to user clients, an enterprise can be the provider of Web services and also the consumer
of other Web services.

4, CORBA

CORBA, or Common Object Request Broker Architecture, is a standard
architecture for distributed object systems developed by the Object Management Group
(OMG) consortium. The OMG is responsible for defining CORBA. The OMG comprises
over 700 companies and organizations, including aimost all the major vendors and
developers of distributed object technology, including platform, database, and application
vendors as well as software tool and corporate developers. CORBA allows a distributed,
heterogeneous collection of abjects to interoperate. The basic CORBA paradigm is a
request for services of adistributed object. Everything else defined by the OMG isin
terms of this basic paradigm. The services that an object provides are given by its
interface. Interfaces are defined in OMG's Interface Definition Language (IDL).
Distributed objects are identified by object references, which are typed by IDL interfaces.

The Object Request Broker (ORB) is the distributed service that implements the
request to the remote object. It locates the remote object on the network, communicates
the request to the object, waits for the results, and when available communicates those
results back to the client. The client and the CORBA object regardiess of where the
object is located use exactly the same request mechanism. It might be in the same process
with the client, somewhere in the same network enterprise or in another country. Thereis
no difference for the client and the architecture in total. Furthermore, the client issuing
the request can be written in a different programming language from the implementation
of the CORBA object. The ORB does the necessary trandlation between programming
languages. Language bindings are defined for all popular programming languages.

In conclusion, we can say that CORBA objects differ from typical programming
language objects in three main ways. @) they can be located anywhere on a network b)
they can interoperate with objects written on other platforms, and c) they can be written
in any programming language (Java, C++, COBOL, etc) for which there is a mapping

from IDL to that language.
15

B. SURVEY OF SECURITY ISSUES IN RELATED TECHNOLOGIES AND
RESEARCH LITERATURE SURVEY

1. W S-Security

Many experts agree that Web Services (WS) lack of security standards is one of
the mgjor factors that has slowed the widespread acceptance and implementati on of Web
Services. As a consequence of this opinion, in April 2002, IBM, Microsoft, and VeriSign
published a new Web Services security specification, WS-Security. The specification
aims to help enterprises build secure Web Services and applications based on them that
are broadly interoperable. Eventualy, this specification would be submitted for
consderation as a standard, and looking a the amount of commitment that IBM,
Microsoft, and VeriSign have invested in it, it may soon go that way. This specific ation
proposes a standard set of SOAP extensions that can be used when building secure Web
Services to implement integrity and confidentiality.

WS-Security supports, integrates, and unifies several popular security models,
mechanisms, and technologies. This alows a wide array of existing systems to
interoperate in a platform- and language-neutral manner in the context of present day
Web Services. It also defines a standard set of SOAP extensions. These message headers
can be used to implement integrity and confidentiality in Web Services applications. This
specification aso provides standard mechanisms for Web Services applications to
exchange secure, signed messages. Another important factor of WS-Security isthat itisa
solid, open-standards-based security model and hence will be developed rapidly.

Microsoft and IBM have produced a road map outlining several Web Services
security specifications, which is available a http:/Avww -
106.ibm.com/devel operworks/security/library/ws-secmap/. This road map is based on a
radical gpproach to security and defines additional, related Web Services security
capabilities within the framework established by the WS-Security specification. By using
this framework, enterprises can incorporate the new specifications, as needed, into the
different levels of their Web Services applications. The other proposed specifications
include WS-Policy, WS- Trust, WS-Privacy, WS-Secure Conversation, WS-Federation,
and WS-Authorization. A summary with a brief description of al the above
specifications is shown in the Table 1.

16

Specification Description

WS- Security Describes how to attach signature and encryption
headers to SOAP messages. In addition, it describes
how to attach security tokens, including binary
security tokens such as X.509 certificates and
Kerberos tickets, to messages.

WS-Policy Describes the capabilities and constraints of the
security (and other business) policies on
intermediaries and endpoints (e.g. required security
tokens, supported encryption algorithms, privacy
rules).

WS-Trust Describes a framework for trust models that enables

Web services to interoperate securely.

WS-Privacy Describes a model for how Web services and
requesters state subject privacy preferences and
organizational privacy practice statements..

WS- Describes how to manage and authenticate message
SecureConversation | exchanges between parties including security context
exchange and to establish and derive session keys.

WS-Federation Describes how to manage and broker the trust
reationships in a heterogeneous federated
environment including support for federated

identities.

WS-Authorization | Describes how to manage authorization data and

authorization policies.

Figure4. WS Security Summary
Among the main advantages of WS Security is that it is the most comprehensive
and elaborate attempt to add security to Web Services. It insulates development teams

from the low level specific details of the technologies involved in implementing security.
17

It also facilitates a rapid change of implementation between technologies without
disturbing the existing interfaces between systems. WS-Security is flexible and is
designed to be used as the basis for the construction of awide variety of security models
including PKI, Kerberos, and SSL. Specifically, WS-Security supports multiple security
tokens, trust domains, signature formats, and encryption technologies. WS -Security is a
building block that can be used in conjunction with other Web Services extensions and
higher-level application-specific protocols to accommodate a wide variety of security
models and encryption technologies.

2. Microsoft’s NET Framework Security
a. I ntroduction

Microsoft's .NET Framework provides a rich security system, capable of
confining code to run in tightly constrained, administrator-defined security contexts. In
many of the existing security models, security attributes are assigned to either users and
their groups or both. This means that users, and all code run on behalf of these users, are
either permitted or not permitted to perform operations on critical resources. Thisis a
common security model in most operating systems. The .NET Framework provides, in a
similar way, a security model caled role-based security that can be defined by the
developer. Another feature that the .NET Framew ork can also provide is security on
code. Thisisreferred to as code access security or sometimes as evidence-based security.
With code access security, a user may be trusted to access a resource, but if the code the
user executes is not trusted, then access to the resource will be denied. Security based on
code, as opposed to specific users, is a fundamenta facility to permit security to be
expressed on mobile code. M obile code may be downloaded and executed by any number
of users all of which are unknow n a development time. The .NET Framework security
system functions over the traditional operating system’s security, adding a second more
expressive and extensible level to operating system security. Both layers complement
each other and sometimes the operating system security system can delegate some
responsibility to the common language runtime security system for managed code. Thisis
apowerful capability as the runtime security system is finer grain and more configurable
than traditional operating system security.

18

b. Code Access Security

Code access security assigns permissions to assemblies based on assembly
evidence. Code access security uses the location from which executable code is obtained
and other information about the identity of code as a primary factor in determining what
resources the code should have access to. This information about the identity of an
assembly is called evidence. Whenever an assembly is loaded into the runtime for
execution, the hosting environment attaches a number of pieces of evidence to the
assembly. It is the respongibility of the code access security system in the runtime to map
this evidence into a set of permissions, which will determine what access this code has to
a number of resources, such as the registry or the file system. The default code access
security policy has been designed to be as secure as it can be, for most application
scenarios of managed code. There are many limitations regarding what non-trusted code
from the Internet or local intranet is capable of doing when executed on the local
machine. The code access security default policy model thus represents a conservative
approach to security, so administrators need to take explicit action to make the system
less secure. The Code Access Security is foc used on three core abstractions. permissions,
evidence, and policies. The security abstractions for role-based security and code access
security are represented as types in the .NET Framework Class Library and are user -
extendable.

Permissions represent authorization to perform a protected operation.
These operations often involve access to a specific resource. In general, the operation can
involve accessing resources such asfiles, the registry, the network, the user interface, or
the execution environment. An example of a permission that does not involve a tangible
resource is the ability to skip verification. Based on the evidence presented to the security
system at assembly load time, the security system grants a permission set that represents
authority to access various protected resources. Conversely, resources are protected by a
permission demand that triggers a security check to see that a specific permission has
been granted to al callers of the resource; if the demand fails, an exception is raised.

Whenever an assembly is loaded into the runtime, the hosting environment
presents the security system with evidence for the assembly. Evidence congtitutes the

input to the code access security policy system that determines what permissions an
19

assembly may receive. Many of the classes that ship with the NET Framework, such as
Zone, URL, Hash, Site, Application Directory, are used as standard forms of evidencein
the security system. The procedure of determining the actual set of granted permissions

to an assembly has three main parts:

A. Individua policy levels evaluate the evidence of an assembly and

generate a policy level specific granted set of permissions.

B. The permission sets calculated for each policy level areintersected with
each other.

C. The resulting permission set is compared with the set of permissions
the assembly declared necessary to run, or refuses and the permissions
grant is modified accordingly.

During security evaluation, other assemblies might need to be loaded to be
used in the policy evaluation process. For example, an assembly can contain a user -
defined permission class as part of a permission set handed out by a code development
group. Of course, the assembly containing the custom permission aso needs to be
evaluated. If the assembly of the custom permission is granted the permission set
containing the custom permission it itself implements, then a circular dependency ensues.
To avoid this, each policy level contains a list of trusted assemblies that it needs for
policy evaluation. The list of required assemblies is naturally referred to as the list of
"Policy Assemblies,” and contains the transitive closure of all assembly required to
implement security policy at that policy level. Policy evaluation for all assemblies
contained in that list is short circuited to avoid the occurrence of circular dependencies.

C. Role-based Security

The basic component of the code access security system, as it is described
in the previous chapter, is the identity of code. However, there is till a need to be able to
express security settings based on user identities. The runtime security system also
includes role-based security features, which are similar to the implementation of security
in many current operating systems. Two core abstractions in role-based security are
Identity and Principal. |dentity represents the user on whose behalf the code is executing.

It isimportant to remember that this could be a logical user as defined by the application
20

or developer and not necessarily the user as seen by the operating system. A Principal
represents the abstraction of a user and the roles in which a user belongs. Trying to
explain better the distinction between the identity and the principal, it can be said that
identity is the user from his code point of view and principa is the user from his assigned
roles point of view.

3. Java Security
a. Introduction

Since the inception of Java technology, there has been strong and growing
interest around the security of the Java platform as well as new secur ity issues raised by
the deployment of Java technology. One of Java's main features is its ability to move
code over anetwork and to run that code. Unlike other languages, Java has been designed
to do this securely. The first versions of Java security, which used the concept of the
“sandbox,” was proved inadequate to support the demands for fine-grained security that
can be easily implemented. Recent releases, such as Java 2 Runtime Environment,
provide fine-grained security features that enable implementation of a flexible policy

decoupled from the implementation mechanism.

Although enforcement of policies during code execution is a substantial
part of security, proper security starts at the very beginning, during the generation of byte
code. A language's type safety, which is enforced by the compiler and checked by the
runtime environment, proves critical to an overal secure environment. There have been
many computer security breaches that stemmed from the ability to overflow buffers
easily or to access memory unimpeded. Those situations are caused in part by a
language's poor type safety and inadequate enforcement in the executing environment.
Degspite the safety checks enforced by the compiler, the VM must still be able to deal
with faulty byte code, whether generated accidentaly or maliciously. Java security
manifestsitself in the following forms:

a) Protection built into the language,
b) Building blocks for a flexible secure environment, and

¢) Protection againgt accidental or malicious attacks to the language and platform.

21

b. Basic Concepts

A fundamental concept and important building block of system security is
the protection domain [Saltzer and Schroeder] [1]. A domain can be scoped by the set of
objects that are currently directly accessible by a principal, where a principal is an entity
in the computer system to which permissions (and as a result, accountability) are granted.
The sandbox concept utilized in JDK 1.0 is one example of a protection domain with a
fixed boundary. The protection domain concept serves as a convenient mechanism for
grouping and isolation between units of protection. For example, it is possible (but not
yet provided as a built-in feature) to prevent protection domains from interacting with
each other so that any permitted interaction must be either through trusted system code or
explicitly alowed by the domains concerned. Protection domains generally fal into two
digtinct categories. system domain and application domain. It is important that al
protected external resources, such as the file system, the networking facility, and the

screen and keyboard, be accessible only via entities within the system domain.

A domain conceptually encloses a set of classes whose instances are
granted the same set of permissions. Protection domains are determined by the policy
currently in effect. The Java application environment maintains a mapping from code
(classes and instances) to their protection domains and then to their permissions. A thread
of execution (which is often, but not necessarily tied to, a single Java thread, which in
turn is not necessarily tied to the thread concept of the underlying operation system) may
occur completely within a single protection domain or may involve an application
domain and aso the system domain. For example, an application that prints a message
out will have to interact with the system domain that is the only access point to an output
stream. In this casg, it is crucid that the application domain does not gain additiona
permissions by calling the system domain. Otherwise, serious security implications can
ensue. In the reverse situation where a system domain invokes a method from an
application domain, such as when the AWT system domain calls an applet's paint method
to display the applet, it isagain crucial that at any time the effective access rights are the
same as the current rights enabled in the application domain. In other words, a less
"powerful" domain cannot gain additional permissions as a result of caling or being
caled by amore powerful domain.

22

C. New Enhancements of the Java 2 SDK

There are many enhancements in the security architecture of the latest
Java 2 Standard Development Kit (SDK). Severa features that were previoudly available
separately are now part of the core API set. These include support for encryption and
decryption with the Java Cryptography Extension (JCE), support for Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) protocols with the Java Secure Socket
Extension (JSSE), and support for user -based authentication and access controls with the
Java Authentication and Authorization Service (JAAS). In addition to the inclusion of
these previoudly optiona packages, we can find new support for building and verifying
certificate chains with the Java Certification Path APl and support for the Kerberos V5
mechanism under Java GSS-API and JAAS. Additional enhancements were made in
improving the security policy-managing tool, policy tool, and in adding support for

dynamically loading security policies.

The Java Cryptography Extension (JCE) provides support for encryption,
decryption, key agreement, Message Authentication Code (MAC), and some other
cryptographic services. Due to import control restrictions of some countries, the JCE
jurisdiction policy files shipped with the Java 2 SDK, release 1.4 dlow "strong" but
limited cryptography to be used. An "unlimited strength” version of these files indicating
no restrictions on cryptographic strengths is available for those living in eligible

countries.

The Java Secure Socket Extension (JSSE) library provides support for
communicating using the Secure Sockets Layer (SSL) and Transport Layer Security
(TLS) protocols. Where the JCE operates on specific local data structures, the JSSE uses
a different abstraction, applying encryption/decryption to network socket traffic. It adds
server authentication, message integrity, and optiona client authentication. Most people
think of SSL and TLS as the secure HTTP protocol, better known as HTTPS. SSL (and
thus HTTPS) permits encrypted traffic to be exchanged between the client and server. For
example, in an SSL mode, after an SSL client initiates a conversation with an SSL server,
the server sends an X.509 certificate back to the client for authentication (SSL aso
supports mutual authentication). The client then checks the validity of the certificate.

Assuming the server is verified, the client generates a pre-master secret key, encrypts it
23

with the server's public key from the certificate, and sends the encrypted key back to the
server. From this pre-master key, the client and server generate a master key for the
session. After some basic handshaking, the encrypted exchange can commence.

The Java Authentication and Authorization Service (JAAS) provides for
the authentication of users and the authorization of tasks based upon that authentication.
This is an enhancement to the prior standard security model capabilities of enabling a
specific set of tasks based on authentication. Previoudy, anyone authenticated had access
to the same security restrictions. Now, there is control on what tasks are available for a
specific authenticated user.

The Java GSS-API (Generic Security Service) adds Kerberos support to
the Java platform. Kerberos is a network authentication protocol, originated at the
Massachusetts Institute of Technology (MIT) as project Athena back in 1987. The Java
GSS-API offers single sign-on within adomain, if everything within the domain has been
Kerberos-enabled. Support is also provided for single sign-on across different security
reams over a network. Used in conjunction with JAAS, once a user's identity is
established, future authentication requests are no longer necessary.

The fifth of the libraries, which is now standard, is the Java Certification
Path API. It provides classes for building and validating certificate chains, an important
requirement of a Public Key Infrastructure (PKI). These certificates provide for the
storage of security keys for users. By trusting the issuer of a certificate that holds the
keys, and trusting the issuer of the certificate that trusts the original certificate, you
establish chains of trust. By following this certificate path chain, you eventually either
end up with a certificate issued by a Certification Authority (CA) that you trust or a
certificate issued by a CA that you do not trust. Thus, the relying party can ensure a
subject's public key is genuine and trusted based on the trustworthiness of the underlying
certificate chain.

4, COM & DCOM

a. I ntroduction

The Component Object Model (COM) refers to both a specification and
implementation developed by Microsoft Corporation, which provides a framework for

24

integrating components. This framework supports interoperability and reusability of
distributed objects by alowing developers © build systems by assembling reusable
components from different vendors that communicate via COM. It aso defines an
application-programming interface (API) to alow for the creation of components to
integrate custom applications or to alow diverse components to interact. However, in
order to interact, components must adhere to a binary structure specified by Microsoft.
As long as components adhere to this binary structure, components written in different
languages can interoperate independently of the programming language or the platforms
(MS Windows, UNIX, Macintosh). In addition, COM provides mechanisms for the
following:

v/ Communications between components, even across process and network
boundaries

v Shared memory management between components
v' Error and status reporting
v Dynamic loading of components

Didtributed COM (DCOM) is an extension to COM that allows network -
based component interaction. While COM processes can run on the same machine but in
different address spaces, the DCOM extension alows processes to be spread across a
network. With DCOM, components operating on a variety of platforms can interact, as
long as DCOM is available within the environment. It is best to consider COM and
DCOM as a single technology that provides a range of services for component
interaction, from services promoting component integration on a single platform, to
component interaction across heterogeneous networks. In fact, COM and its DCOM
extensions are merged into a single runtime. This single runtime provides both local and

remote access.
b. Security

The Component Object Model (COM) can make distributed applications
secure without any security-specific coding or design in either the client or the
component. Just as the COM programming model hides a component's location, it dso

hides the security requirements of a component. The same binary code that works in a
25

single-machine environment, in which security may be of no concern, can be used
securely in a distributed environment. COM provides two distinguishable categories of
security. The firgt is termed activation security, and it controls which objects a client is
alowed to instantiate. The second form is call security, which dictates how security
operates & the per-cal level on an established connection from a client to a server object.

Activation security controlswhich classesaclient is allowed to launch and
to retrieve objects from. The Service Control Manager of a particular machine
automatically applies activation security. Upon receipt of arequest from a remote client
to activate an object the Service Control Manager of the machine checks the request
against the following information stored within its registry:

v Machine-wide settings for securing activation
v Per-class settings for activation

Call security in COM is provided via two mechanisms in order to secure
cals. The first is smilar to DCE RPC, which means that COM provides functions and
interfaces that applications can use to do their own security checking. COM runs the
second mechanism automatically. If the application provides some setup information,
COM will make dl the necessary checks to secure the application's objects. This
automatic mechanism does security checking for the process, not for individual objects or
methods. Applications requiring more fine-grained security can perform their own
security checking. The two mechanisms are not exclusive: an application can ask COM to
perform automatic security checking and aso perform its own. COM call -security
services are divided into three categories. general functions called by both clients and
servers, new interfaces on client proxies, and server-side functions and call-context
interfaces. The general functions initialize the automatic security mechanism and register
authentication services. The proxy interfaces allow the client to control security on calls
to individua interfaces. The server functions and interfaces alow the server to retrieve
security information about a call and to impersonate the caller.

C. IC METADATA STANDARD FOR PUBLICATIONS
The IC Metadata Sub-Working Group (MSWG) has developed the Intelligence

Community Markup Language (ICML), which is based on a number of data modeling
26

activities that have occurred in the IC over the last few years. The ICML standard is
being devel oped in response to requests by numerous organizations within the IC to have
an 1C-wide mandated XML model to support interoperability of intelligence content
across producers and consumers of information within the 1C. Based on XML, ICML
defines tags that communicate important additional information about intelligence
content. Furthermore, ICML introduces:

1) Many document structures, such as reports, articles, and analytical packets.

2) An expanded collection of document metadata separated into administrativ e and
descriptive categories.

3) The most commonly used generic document components, such as paragraphs, lists,
tables, and media.

4) CAPCO-compliant security labels.
5) Descriptive content tags indicating better the subject matter of the information.

ICML first appeared at the Intelink Conference in September 2000 in the form of
an XML Document Type Definition (DTD). As stated in that early version, the purpose
of that DTD was

to provide a common set of XML elements (TAGS) for
implementing security-based metadata throughout the IC.
This DTD may be incorporated into various organizational
XML-based DTDs by cdling the entity declaration
referenced within the core |C Security DTD.

At the end of 2001, the Intelligence Community Metadata Standard for
Publications (IC-MSP) was published, as part of the IC CIO Executive Council and
Working Group commitment to IC inter-organization interoperability. Since the first
version of IC-MSP (IC-MSP Release 0.5, 12/08/01), the focus remains to aid finished
intelligence production. And because the majority of the intelligence content being
produced within the IC is in the form of documents, the IC-MSP Panel decided that
limiting the scope of the initial 1C-MSP release to document type of intelligence content
would yield the most benefit within the shortest period of time. The IC-MSP standard is
a flexible markup application can support many processes such as authoring, storage,

paper or web output etc. Furthermore, the IC-MSP consist of XML elements, structures
27

or models that are either characteristic to IC analyses and products or have genera

application and have been established by government and industry as officia or de facto
standards.

During the past year, six versions of the above |C-MSP were published, in order
to implement the improvements and the feedback of the agencies. The latest version 1.0a
was published on 16" of September 2002. It is actually the same with its previous version
1.0 (5th July 2002) containing only some corrections to the Data Element Dictionary
(DED) in order to remove disconnects between the DED and the various DTD modules.
At the same time, due to the increased requirements for security, The Intelligence
Community Metadata Standards for Information Assurance (MSIA) are being devel oped
to ensure the security of XML -based transactions throughout the community. The IC
MSIA includes additional efforts to facilitate secure transactions within the Intelligence
Community such as:

» Digital Signatures (XML-DSig)
» Security/Encryption (XML -Sec)
» Key Management System (XML-KMS)

» Information Security Marking (XML -1SM)

28

[1l. DBMSARCHITECTURES.

A. OVERVIEW OF THE BASIC SECURE DBMS

1. Historical Background

In the mid 1970s, the US Air Force sponsored two programs for trusted relationa
Database Management System (DBMS) research. The first work, done by Hinke and
Schaefer in 1975, [6] documented the design for ahigh assurance DBMS. It was based on
the Multics operating system, which contained all the relevant trusted code, and therefore
was responsible for al the access control. One year later, |. P. Sharp and Associates [5]
developed amodel for amultilevel relationd DBMS. This model was based on a layered
internal DBMS architecture using a method introduced by Parnas. Both the above
architectures depended on the security of the underlying operating system'’s kernel, and
for that reason they were referred to as “kernelized architectures.”

Two years later, the US Navy sponsored two more efforts contributing to the
trusted DBMS development. The first, called “The Military Message System Moddl,”
introduced a multilevel container that holds sub-objects that the container’s level
dominates. Even though it influenced many trusted DBMS designs, it did not result in the
development of a design for a multilevel DBMS. The second program sponsored by the
Navy intended to address the specific requirements for Navy surveillance systems.
Among the special features of this model was the usage of the container concept and
nesting database objects. Both the “Integrity-prototype” and the “Trudata’ DBMS used
the Navy model as their basis.

One of the most important points in the trusted DBMS development occurred
when the Air Force sponsored a study on trusted data management at Woods Hole,
Massachusetts. One of the groups there recommended a separation into three approaches:
the kernelized (or Hinke-Schaefer) approach, the distributed (or back-end or replicated)
approach, and the cryptographic integrity -lock (or spray painting) approach. All of those
three approaches form the first of the two main categories of the multi-level secure
DBMS architectures, which was named “the Woods Hole architectures.” The other main

category isreferred to as “the trusted subject DBMS architectures,” which mainly differs

29

from the Woods Hole architectures in that they perform their own mandatory access
control. Since then severd variations have developed within these two main categories.

2. Woods Hole Ar chitectures

The Woods Hole architectures assume that an untrusted, usually commercia -off-
the-shelf (COTS) DBMS is used to access the data. In order to provide an overall secure
DBMS system, trusted code is devel oped around that DBMS. The three different Woods
Hole architectures address three different ways to wrap code around the untrusted
DBMS.

The Kernelized architecture scheme (Figure 5) uses a trusted operating system
and multiple copies of the DBMS; each is associated with atrusted front end. The trusted

Kernelized DBMS

| High TTser | | LOWIUSEr |
T [crmﬁmd;simmmd]
| Hizh DBMS | | Tow DBEMS |

I === y
] sted OS 1‘7
e ————
Database
High & Low Data

Figure5. Kerndized DBMS
front end-DBMS pair is associated with a particular security level. Between the DBMS
and the database, a portion of the trusted operating system keeps the data separated by

security level. Each trusted front end is trusted to supply requests to the proper DBMS.
The database is separated by the security level. The trusted o perating system separatesthe
data when it is added to the database by a DBMS and combines the data when it is
retrieved (if allowed by the security rules of the requesting DBMS). The high DBMS
obtains data combined from the high and low segments of the database. The low DBMS
can only obtain data from the low segment of the database. A benefit of this scheme is
that the access control and the separation of data at different classification levels is

30

performed by a trusted operating system rather than the DBM S. Data at different security
levelsisisolated in the database, which alows for higher -level assurance. Users interact
with aDBMS at the user's single-session level.

The distributed architecture scheme (Figure 6) uses multiple copies of the trusted
front end and DBMS, each associated with its own database storage. In this architecture

Distributed DBMS

Data Duplication Approach

| High TTser | | ;"User |
| Trusted Front End “Trusted Front End |
| High DBEME | | Low DBEIMS |

Database Database
High & Low Data Low Data

Figure6. Distributed DBMS
scheme, low data is replicated in the high database. When data is retrieved, the DBMS
retrieves it only from its own database. A benefit of this architecture is that data is
physicaly separated into separate hardware databases. Since separate replicated
databases are used for each security level, the front end does not need to decompose user

query datato different DBMSs.

The Integrity Lock architecture scheme (Figure 7) places atrusted front-end filter
between the users and the DBMS. The filter provides security for the MLS. When datais
added to the database, the trusted front-end filter adds an encrypted integrity lock to each
unit of data added to the database. The lock is viewed by the DBMS as just another
element in the unit stored by the DBMS. The encrypted lock is used to assure that the
retrieved data has not been tampered with and contains the security label of the data
When dataisretrieved, thefilter decryptsthelock to determineif the data can be returned
to the requester. Thefilter is designed and trusted to keep users separate and to store and

31

Cryptographic Integrity Lock

| High Tser | | Low Tser |
i
| Tntrusted Front End | | TUntrusted Front End |

Trusted Filter
Cryptographic Unit

| append
Stamp

Quers Store Response

h] ¥

‘ Tntrusted DEIE ‘

e - 000 Om

Figure7. Cryptographic Integrity Lock DBMS

provide data appropriate to the user. A benefit of this schemeis that an untrusted COTS
DBMS can perform most indexed data storage and retrieval.

3. Trusted Subject Architectures

The Trusted Subject architecture (Figure 8) is a scheme that contains a trusted
DBMS and an operating system. The DBMS can be customized with al the required
security policy (the security rules that must be enforced) developed in the DBMS itself.
The DBMS uses the associated trusted operating system to make actua disk data
accesses. This is the traditional way of developing MLS DBMS capabilities, and it can
achieve high mandatory assurance for a particular security policy by sacrificing of some
DBMS functionality. This scheme results in a specia purpose DBMS and operating
system that requires a large amount of trusted code to be developed and verified along
with the normal DBM S features. The trusted code provides security functionality and has
been designed and developed using a rigorous process, tested, and protected from
tampering in a manner that ensures the Designated Approving Authority (DAA) that it
performs the security functions correctly. The DAA is the security officia with the
authority to say a system is secure and thus its use is permitted. A benefit of the trusted
subject architecture is that the DBM S has access to al levels of data at the same time,

32

Trusted Subject Architectures

| High User | | Low User |

| TIntrusted Front End | | TIntrusted Front End |

— | '.’féf“ns.tzd;iﬁﬁﬁs o

[Trwsteaos |

Figure8. Trusted Subject Architectures
which requires less processing time when retrieving or updating data. This scheme can

also handle awide range of sensitivity labels and can support complex access control. A
sengitivity label identifies the classification level (e.g., confidential, secret) and a set of
categories or compartments that apply to the data associated with the label.
B. ANALYS SAND REQUIREMENTS OF DBMS ARCHITECTURES

1. Basic Requirements

The DBMS that will manage a large amount of documents, like those in large
organization must, at least, include a number of capabilities that will assure an acceptable
level of functiondlity. First of dl, the DBMS has to be scalable in both performance
capacity and incrementa data volume growth. The proposed solution scales in a near -
linear fashion and behaves consistently as the database increases in size, the number of
concurrent users and the complexity of queries. DBMS must aso have a powerful design
in order to support complex decisions with multi-users and a mixed workload. The
optimizer should be mature enough to support every type of query with good
performance, and must also determine the best execution plan based on the changing data
demographics. The optimizer must aso check on the conditional paralelism and
determine what causes the variations in the parallelism deployed. Finally, it must check

on the dynamic and controllable prioritization of resources for queries.

33

Manageability through minimal System Administrator intervention is another
feature that must be present in DBM S architecture. System administration can be simpler
if the DBMS provides a single point of control, which will allow one to create and
implement the new tables at any time. In order to support the critical applications of a
large-scale organization's mission, the DBMS must have a high availability level. Any
down time and any issues that might deny or degrade service to end-users must be
completely transparent to the system administrators. These down time requirements could
include batch load times, software/hardware upgrades, severe system performance issues

and system maintenance outages.

The design and the system architecture should aso be flexible and extensible to
keep pace with evolving business requirements and to improve the value of the existing
investment in hardware and applications. The impact of repartitioning tables and the
addition or deletion of columns must be minimal. The design should also provide optimal
performance across the full range of normalized, star and hybrid data schemas with large

numbers of tables.

Nowadays, interoperability through the web or interna networks has also become
a mgjor factor when deciding on a DBMS. Its ability to support multiple applications
from different business units, leveraging data that is integrated across business functions
and subject areas is considered a critical feature of the DBMS. All the above features, of

course, must be previoudy proven, for the specific product to avoid arisk.

As more business is conducted on the Web, securing data in motion and user
identities is a growing concern. User management and deploying secure infrastructures
have risen to the top of the database administrator’s priorities. The architecture of the
DBM S should protect the data stored in the database, when transferred from unauthorized
access, and from malicious destruction or alteration and accidental introduction of
inconsistency. Encryption forms the basis for secure authentication of users. Even tho ugh
absolute protection of the database from malicious abuse is not possible, a sufficient
increase in the required cost to the perpetrator can be a deterrent. In order for the DBMS
to be protected against malicious or unauthorized access, several forms of authentication
and authorization must be enforced. The system should aso alow the users to grant some

34

forms of authority to other users ensuring at the same time that this authorization can be
revoked at some future time. Roles help to assign specific sets of privileges to different
groups of users inside an organization. When the stored data are highly sensitive, the
various authorizations provided in the database may not be sufficient. In such cases, data
must be encrypted. Only the user who knows how to decrypt and posses the necessary
decryption key should be allowed to read the data. Compatibility with the modern
techniques of encryption-decryption, Public Key Infrastructure (PKI), and Digita
Signatures are highly required when deciding on a DBMS for today or for the future
world.

2. XML and DBMS Architectures

Extensible Markup Language (XML) is emerging as the format of choice for a
variety of types of data, especialy documents. Providing its ability to tag different fields,
XML makes searching simpler and more dynamic. It is also idedl for organizations trying
to meld incompatible systems because it can serve as a common transport technology for
moving data around in a system-neutral format. In addition, XML can handle al kinds of
data, including text, images and sound, and is user-extensible to handle anything special.
One of the main concerns until now has been how to manage the XML -tagged data. A
suitable and convenient solution is to use databases to store, to retrieve and to manipulate
XML. The idea is to place the XML-tagged data in a framework where searching,
analysis, updating and output can proceed in a more manageable, systematic and well -
understood environment. The primary advantage of databases is that users are familiar

with them and their behavior, so combining XML with a database context seems natural.

A few different approaches exist regarding the use of XML in a database. The
main categorization is according to the format that the DBMS uses to store the XML
document. Half of those categories store XML in its native format and the other half
transform it and store it in a common relational or object-oriented database. There are a
number of reasons to use existing database types and existing database products to store
XML, even if it is not in its native form. First, ordinary relational and object-oriented
databases are well known, while native XML databases are new. Second, as a result of
familiarity with relational and object-oriented databases, users understand their behavior,
especially regarding performance. Many businesses are reluctant to move to a native

35

XML database whose characteristics—especially scalability—have not been tested.
Finaly, relational and object-oriented databases are safe choices in the corporate mind.
On the other hand, one of XML's attractive featuresis its hierarchical organization, which
database tables crush. Relational databases must map XML to relationa tables and

therefore flatten XML structures into rows and columns each time data is needed. In

addition, trandating XML to and from the database requires considerable processing,

especidly for large or complex documents. This performance factor may be important
when dealing with web pages through a dial-up Internet connection, but at the same time
this performance factor may be of dight importance if it is used in an Intranet or through
a high-speed Internet connection.

Storing XML documents in a relational or object-oriented database can be donein
different ways. First, one could extract the data elements in an XML document and store
them as data rows and columns in an SQL database. Many cal this technique “eement
storage.” Given an example of an XML intelligence document, a number of SQL tables
could be created with columns for the individua elements of document. The
“IdentifierList,” the “DocumentID,” the “Publisher,” or the “AgencyAcronym” could be
some of the columns. Then, those kinds of data can be managed in SQL with normal SQL
operations. By retrieving the data, an XML document can be pr oduced and published or
transferred via the Web. In case there are new data that must be stored, an “UPDATE”
operation, using common SQL commands, must be done. Element storage has the
advantage that all of the data from the XML document is available to SQL as normd
SQL data so that it can be queried and updated with SQL operations. However, element
storage has the disadvantage of the extra overhead of assembling and disassembling the

XML documents for interchange.

One can also store the XML document in a single SQL column. Since XML is
primarily a file format, a natural storage mechanism is simply a flat file. It is usually
referred to as “document storage.” This approach has some drawbacks, such as data
isolation problems, integrity checks and concurrent-access problems. However the wide
availability of XML tools that work on file data makes it relatively easy to access and to
query XML data stored in files. Thus, this storage format may be sufficient for some

kinds of applications. Using the previous example, a table can be created having a
36

column for the specific category of 1C’ s document. The data-type of that column could be
SQL text, or a Java class designed for XML documents in general, or a Java class

designed specifically for each specific type of IC XML document. Document storage
eliminates the need for assembling and disassembling the data for interchange. However,

there is a need to use Java (or any other language) methods to reference or to update the

elements of the XML documents while they are in SQL, which could be slower and less
convenient than the direct SQL access of element storage.

Finally, there is a combination called “hybrid storage”’ of the above element and
document approaches that exploits the advantages of both. This mainly stores an XML
document in an SQL column, but at the same time extracts some of its data el ements into
separate columns for faster and more convenient access. Given a previous example, one
can create SQL tables, such as for document storage, and then one can include (or later
add) just one or more columns to contain elements extracted from the same type of
documents, such as for element storage. Hybrid storage balances the advantages of
element storage and document storage, but has the cost and complexity of redundant
storage of the extracted data.

Since XML documents are character data, we could analyze them and extract
their data using SQL character string operations. However this process can be
complicated and tedious. Using XML with SQL is greatly facilitated by using XML tools
written in Java (or C++,) which are called “parsers,” and their main job is to analyze and
to vaidate XML documents. Specifically, XML parsers provide many capabilities,

including the following:
v" Checking that a document iswell formed and valid;
v Handling character set issues;
v' Generating a Java representation of a document’s parse tree;
v' Building or modifying a document’s parse tre;
v Generating a document’s text from its parse tree.

There are many XML parsers available in Java, often with afree license or public
domain. Most XML parsers implement two standard interfaces, the Simple API for XML
37

(SAX) and the Document Object Model (DOM). SAX provides facilities for specifying
input sources, character sets, and routines to handle external references. It generates
events during the parse so that user routines can process the document incrementally, and
it returns a DOM object that is the parse tree of the document. On the other hand, DOM
provides facilities for stepping through the parse tree and for assembling a parse tree.
Applications that use the implementations of the SAX and DOM interfaces of an XML
parser can be portable across XML parsers.

Another area of concern about the XML storage is where the mapping should be
done. Almost al the languages that could manipulate XML can run in both the client and
the server. For example, Java methods can be executed in either the client or server
environment, giving us a choice of which environment to map an XML document to or
from SQL. This is a consideration only for element storage and hybrid storage, since
document storage involves little or no processing of the document. If the main priority is
the efficiency, then mapping should be done in the client and only the SQL data should
be transferred between the client and the server. Unfortunately this approach could not
provide us with a high level of security. When security is the priority, the entire process
must be done in the server where the appropriate security policy can be enforced.

C. RESEARCH ON RELATED DBMS PRODUCTS
1. Oracle 9

Oracle 9 (where i reflects Oracle's emphasis on the Internet) is not only the
version name for the database server, but is aso the family name for a whole suite of
products around the core server. These products in clude the Oracle9i Application Server,
the Oracle9i DBMS and the Oracle9i Developer Suite. It was officially released in
Europe at the Oracle Open World in June 2001 and became available immediately
thereafter. Oracle 9i brings new or enhanced functionality in many areas such as
availability, scalability, performance, manageability, Internet content management and
security. Oracle’s Advanced Security option can be separated into three major parts:

Preserving the privacy and integrity of network data and communication.
Providing strong authentication services for users, databases and web servers

Enterprise User Management

38

It is widely known that al network traffic is vulnerable to eavesdropping, data
capture, replay, data modification and person-in the-middle attack. The network security
features of Oracle Advanced Security address these concerns by integrating encryption
and integrity checking. The cryptographic functionality in Oracle Advanced Security
converts al clear text into cipher text. The cipher text is transmitted across the network in
away in which it is computationally unfeasible to convert the cipher text back into its
corresponding plain text without the correct key. The algorithms used to encrypt Oracle
Net traffic are;

Triple DES (3DES, 2Key and 3Key 112- and 168-hit keys)
RC4 (40-, 56-, 128-, 256-)
Advanced Encryption Standard (AES)

Oracle Advanced Security also provides encryption capabilities to thin Java Database
Connectivity (JDBC) clients. All Oracle Net traffic between the database and the client
(or a web server) is encrypted. A key benefit of using Oracle Advanced Security
encryption is that the users or the database do not need to have digita certificates or
communicate over Secure Socket Layer (SSL).

Data integrity protects against data modification and replay attacks and provesto
the receiver of the message that the message has not been tampered with in transit. Thisis
one of the mgjor requirementsin today’ s online world. Data integrity checking, which is
also called “cryptographic check summing” provides sequencing and hashing to protect
against these packet attacks. Oracle Advanced Security provides industry standard
implementations of Message Digest 5 (MD5) or the Secure Hashing Algorithm (SHA -1)
for providing data integrity.

There is a need for augmenting the password-based authentication with stronger
measures to identify the users. Oracle Advanced Security provides several strong
authentication schemes while supporting industry standards including Kerberos, Smart
cards, Remote Did-in User Service RADIUS), Distributed Computing Environment
(DCE), Standards-based Public Key Infrastructure (PKI), Entrust Profiles, and X.509v3
compliant digital certificates over Secure Socket Layer (SSL). Strong authentication

39

mechanisms such as Kerberos, DCE and X.509v3 certificates can also provide Single

Sign On capabilities to applications that rely on these authentication services.

Today’s business environment requires an around-the-clock user administration
just asthere is a need for a twenty-four hours, seven-day a week application availability.
The costs of user administration could be very high if the users and their authorizations
continue to be duplicated across the different applications that are deployed throughout
the enterprise. Oracle’'s Enterprise User Security provides the ability to manage

enterprisewide users easily and securely by

centralizing the storage of user credentias, roles and privileges in an

LDAPv3 compliant directory server;

providing the infrastructure to enable single sign-on using X.509v3
compliant certificates,

alowing password authenticated database users to be centrally managed
as password authenticated enterprise users.
2. IBM DB2 Universal Database V7
The DB2 Universal Database (UDB) is afamily of products that covers a broad
range of heterogeneous platforms, scaling from handhelds up to mainframes. One of the
most popular products of that family is the DB2 Universal Database for Unix, Windows
and OS/2 (DB2 UDB for UWO), which is packaged into four editions

DB2 UDB Personal Edition for usage in a single-user mode (DB2 UDB
PE)

DB2 UDB Workgroup Edition applications and data shared in a
workgroup or department (DB2 UDB WE)

DB2 UDB Enterprise Edition for complex configurations and large
database needs from uniprocessors to the largest SMP's (DB2 UDB EE)

DB2 UDB Enterprise — Extended Edition for large database support in
Massively Parallel Processor (MPP's) or clustered server environments
(DB2 UDB EEE)

40

DB2 UDB 7.2, released in June 2001, isidentical to Version 7 FixPak 3 asfar as
the database engine is concerned. However dl of the enhancements outside of the engine
(e.g. new connectors, improvements to the warehouse manager) are shipped only as part
of V7.2. The Verson 7.2 of DB2 focuses on integrating business intelligence
functionality, on integrating IBM MQSeries and on integrating XML documents
supporting Web Services based on XML/SOAP/UDDI. Moreover, DB2 UDB 7.2
includes many enhancements on store procedures and data management.

To protect data and resources associated with a database server, DB2 uses a
combination of external security services and internal access control information. To
access a database server one must pass some security checks before being given access to
a database or other resources. The authentication of a user is completed using a security
facility outside of DB2. The security facility can be part of the operating system, a
separate product, or, in certain cases, may not exist at all (like Windows 95). On UNIX
platforms, the security facility isin the operating system itself. DCE Security Servicesis
a separate product that provides the security facility for a distributed environment. DB2
uses the security facility to authenticate users in one of two ways. First, DB2 acquirest he
user’s successful security system login as evidence of the user’s identity and allows him
or her to work with local commands to access local data or to work with remote
connections where the server trusts the client authentication. Second, DB2 accepts a user
ID and password combination and uses the successful validation of the ID and password
by the security facility as evidence of the user’ sidentity. In this way, DB2 alows remote
connections in which the server requires proof of authentication and use of operations
when the user wants to execute a command under an identity other than the identity used

for login.

This authorization process is performed inside the DB2 by using tables and
configuration files. Each authorized name is associated with a permissions record. The
two types of permissions recorded by DB2 are privileges and authority levels. A privilege
defines a single permission for an authorization name, enabling a user to create or access
database resources. Privileges are stored in the database catalogs for a given database.
Authority levels provide a method of grouping privileges and controlling higher -level

database manager maintenance and utility operations. The authorities used by DB2 are
41

1) System Administration Authority (SYSADM)

2) Database Administration Authority (DBADM)

3) System Control Authority (SYSCTRL)

4) System Maintenance Authority (SYSMAINT).
The privileges are

1) Database Privileges

2) SchemaPrivileges

3) Tableand View Privileges

4) Peackage Privileges

5) Index Privileges.

Database-specific authorities are stored in the database catal ogs for each database
while system authorities are stored in the database manager configuration file for a given
instance. Moreover, the concept of “groups’ provides a useful way of performing
authorization for a collection of users without having to grant or to revoke privileges for
each user individually. Unless otherwise specified, group authorization names can be
used anywhere authorization names are used for authorization purposes. The recorded
permissions are compared to the authorization name of an authenticated user and those of
groups in which the user is a member. Depending upon the comparison, DB2 decides
whether to allow or to deny the user the requested access.

3. Sybase Adaptive Server Enterprise (ASE) 12.5

Sybase Adaptive Server Enterprise (ASE) 12.5 includes a Policy-Based Access
Control framework, which provides a powerful and flexible way of protecting data, al
the way down to the row level. Security policies can be defined according to the value of
individual data elements, and then the server can enforce these policies. This means that
once a policy has been defined, it is automatically invoked whenever the affected data is
queried, whether through an application, a specific query, a stored procedure, or aview.
Because the server enforces security, the security administration of an ASE is smpler.

The security administration should focus on defining a security policy to enforce

42

consistently across the entire server. This is accomplished through the combined
capabilities of Access Rules, Login Triggers, and Domain Integrity Rules. Let's examine
each of these capabilities.

Access Rules are the fundamental concepts of Policy-Based Access Control. An
Access Rule is bound to a specific column and then invoked on any SELECT, UPDATE,
or DELETE operation on the corresponding table. Login Triggers are stored procedures
that execute as part of the login process. They are a convenient way of configuring an
Application Context by looking up and setting values for all of the attributes within a
context. "Context" a user-defined context can be used by one or more applications.
Contexts are set up on a session-by-session basis allowing the security policy to be based
on properties of both the application and the user invoking the application. Furthermore,
Login Triggers can query other tables and then use that data to support a number of
different account usage policies. Domain Integrity Rules are existing ASE server -
enforced integrity mechanisms that can be used in conjunction with Access Rules to
provide security policy control over the flow of information into and through the server.
Asisthe case with Access Rules, Domain Integrity Rules are bound to columns. They are
invoked on UPDATE and INSERT operations.

Sybase ASE 12.5 offers two methods of authentication: the famous user name and
password pair, and the digital certificates. The client passes a user name and password to
create an authenticated session with the server. This authentication is accomplished on
the server when it places the user name on an Access Control List role using its own
management tool. Then the server can either use the user name aone, or it can
authenticate the password using the underlying operating system. This method places all
enterpriseclass authentication verification into a single repository —the operating system,
which according to Sybase heightens security. By using the enterprise’ s operating system
as the password repository, the involved “links’ are less and the chance that security

chain will break is accordingly smaller.

The other method of authentication provided by ASE is the X.509 digita
certificates. The certificate contains information, such as the user’s name and the
authority that issues the certificate, and then verified the users identity and the user's

43

public key. Digital certificates add an extra level of security over traditional user name
and password pairs by controlling the possession of the certificate. The Server’s Security
Manager accepts a user name and allows acess to a role, as well as allows the user to
provide a digital certificate by choosing from alist of known digita certificates. In this
way, NO user names or passwords are ever sent across the wire. The Server’s Security
Manager can also accept digital IDs from the Entrust PKI to authenticate users. The
Entrust PK1 allows advanced features like single login for every application within the
enterprise. The Entrust ID can be used the same way every other digital certificates are
used, utilizing Entrust’s PKI as the certificate database.

After the authentication process, the next step is to control the objects to which
the authenticated users have access. Sybase ASE uses Access Control Lists (ACL) to
manage this type of object access. An Access Control List (ACL) works with the idea of
building a “role” and placing specific users in that defined role. Each role would have
different privileges according to that rol€'s responsibilities and tasks that must be
performed. A new role can be defined through the Server’'s Security Manager. As soon as
an administrator has defined that role, he can open it and can configure the authorized
users and digita certificates and the unauthorized users and digital certificates. When a
roleis created and the users are placed into that role, then this role can be applied directly
from within the manager. This allows one to choose which level of granularity best fits
each business requirements. When a user's business role changes within the
organization, the administrator can smply move that user into a different role in the
server, and all of their access controls will migrate with them. As components are reused
in future applications, the same security restrictions can also be reused.

D. THREE-TIER ARCHITECTURE
Many of today’s applications can be divided into three distinct aress:

i. The Presentation Logic: the user interface that displays data to the user or

accepts input from the user.

ii. The Business Logic: vdidates and processes the data, ensuring that it is
consistent and in accordance to the requirements and the specifications
before being added to the database.

44

iii. The Data Access Logic: communicates with the database and provides

access to the tables and indices. It aso packs and unpacks the data.

The user interface in those applications is usualy an HTML, XML or XHTML
file, either dynamically generated for each case, or a saved, static one. Furthermore, the
front-tier, user interface can also contain client-side scripts and sometimes Java applets.
But when portability and interoperability is the main concern, the XHTML is the
preferred mechanism for the user’s representation. Almost all the browsers support
XHTML; so designing the user interface to be accessible through a Web browser
guarantees a portability and interoperability across most platforms. The user interface
communicates with the middle-tier business logic by using the networking features that
the browser provides automaticaly.

When the middle-tier receives a request from the user interface, it processes the
regquest according to the business logic and then accesses the database to manipulate any
data required. Generally, in today’ s multi-tier architectures, Web servers are increasingly
used to build the middle tier. They can efficiently provide the business logic that
manipulates data from the databases and that also communicates with the client Web
browsers. This request-response model of communication between the client-browser and
the server is accomplished by using a specific Java programming called a servliet. A
servliet extends the functionality of a server and is based on the javax.serviet and

javax.servlet.http packages that provide the necessary classes and interfaces.

The middle-tier serviet interacts with most of the third-tier database systems
through the Java Database Connectivity (JDBC), which provides al the means required
for communication. Developers need not be familiar with the specifics of each database
system. They use common SQL -based queries and the JDBC driver handles the specifics
of interacting with each database system. Moreover, other technologies like ODBC,
developed by Microsoft, also provide generic access to disparate database systems on the
Windows platform (and some UNIX platforms). In those cases, Java enables the JDBC -
to-ODBC driver to alow any Java program to access any ODBC data source.

Organizations that divide their applications according to the above three distinct
and separate areas can gain many advantages. For example, component roles are

45

specidized, improving maintainability; networking and 1/0 overheads. They are aso
clearly defined within a 3tier framework, which provides a good basis for component -
based development and reusability. Components in the business layer can be shared by
any number of components in the presentation layer. Furthermore, using a 3-tier
architecture enhances infrastructure independence. This is because presentation and data
access areas that are often infrastructure-dependent are separated from the application's
business logic. Finaly, a specific set of skillsisrequired to develop each tier, so tiers can
be developed independently of one another. For example, the thin presentation tier alows
front-end experts to do their work without being affected by developments occurring in
the business logic tier.

46

V. IMPLEMENTATION

A. SECURITY ARCHITEC TURE OF THE PROTOTYPE DEVELOPMENT

1. I ntroduction
The prototype is based on the three-tier architecture, which discussed in the

previous chapter. The prototype implements a web service provided by the lat est version
of the ApacheTomcat web server. It represents the middle-tier in the three-tier
architecture that can beintegrated with various other commercial products. The Microsoft
Access Database simulates the third-tier, while the first-tier can be any of the commonly
used Web browsers. The prototype is designed to process everything in the server side
and to dynamically create every response to the user.

-
! Associated
- P - izl ik * Web Server

V' -

High Azsurance
“Tntrusted™ user Operating System

workstation

b J

Web Server

DBMS

Eesponds only to its

Security Policy
assigned web server.

MAC

Security Decisions
High Assurance High Assurance
Operating System Operating System

Figure9. Security Architecture
The database is used to store document data, document metadata and user security
data and to provide the requested resources to the service, which is the only software
component that makes the security decisions according to the policy. The DB is adso
relied upon to keep separate the different levels of data. For simplicity, the database uses
the “document storage” technique that was anayzed in the previous chapter. From the

security point of view, it is better to have the web and the database server running on
47

different machines but in the same physic a location in order to reduce potentia
malicious actions during their communication. If for any reason the web server and the
database server must be separated, besides the known technologies for secure
communication (such as SSL), a modified cryptographic integrity lock can be
implemented. Similarly to the previous discussed Cryptographic Integrity Lock
Architecture, the database would be assumed as untrusted, and the server will pass al the
received information through the trusted filter.

The selected components (e.g. operating system, programming language, web
server, database, etc) are those commonly used nowadays. Most of them are aso open
source or free software, which was the only reason they have been selected and not for
their security features. The organization implementing the prototype, depending on its
specifications and its requirements must choose the appropriate high assurance operating
system that would support the web and database servers. Furthermore, all of today’s
architectures for secure authentication and authorization (e.g. PKI, Kerberos, X509) as
well as those for secure transmission (e.g. encryption, SSL) between the user and the
server can be easily integrated and used because the Java programming language and the
XML supports dl of them.

Even though the user’ s workstation is assumed as an “untrusted” environment, it
is highly recommended to use a high assurance operating system, which will protect the
user and the overall security of the organization. First of al it isimportant to establish a
“trusted path” communication between the user and his or her own machine and then a
secure communication path between the client machine and the server. Furthermore, care
should be taken to prevent high level data from being written into low level server-
managed objects by mistake or malice. This can be possible when a user had a previous
higher level session, and then logged in (the same user or another one) at a lower level
session. Residual data from the higher level session might be available on the client
during the lower level session creating an “ object reuse” problem. It can be addressed by
simple techniques, such as a diskless workstation or an automatic user’s machine reboot
operation after every log off from the system. It is adso a potential field for further
research and future work.

48

2. Security Policies
As it is already mentioned, al the security decisions are made by the server,

which is the only software component that enforces the security policy of the
organization. The security manager of the prototype implements a Mandatory Access
Control (MAC) policy using security objects that are dynamically generated from XML
metadata security tags. For example, even though the information related to a user or a
file are retrieved from the database, the security objects and their permissions are
generated in the server according to the enforced security policy. Those objects are
related to the file's (or user’s) metadata tags, and are kept “dive” only during the current
user’s session and if for any reason the session is invalidated the objects are destroyed.
Moreover, there is no way for a user, to directly communicate with the back -end database
and request any resources because the database server accepts requests only from the
assigned web server. Depending on the specific products, their physical location and their
configuration, an authentication between the web server and the database server can be

done once or in every request.

The security policy of the prototype system allows the authenticated user to open
or to save documents at the level logged on and below. However, every time a user saves
afile to the system, a user’s object and the date and time are attached to the file, making
that file unique. The main purpose of this operation isto make aclear distinction from the
various versions of the same file, saved in the system by the same or other users. Only
specifically authorized users may change the classification of documents. Concerning the
communication between two servers, when a user requests a file that is located in an
associated server, there are two different approaches depending on where the final
decision is made. In the first approach, the requesting server, after its successful
authentication, sends the user’s object and the associated server makes the decision if the
requested file is releasable. In the second approach, after the successful authentication of
the requesting server, the associated server sends al the file names and their security
objects to the requesting server, which will decide which of them are releasable to the
specific user. In the prototype implementation, the second approach is used because the
intention is to share the documents and not the user's information. Furthermore it

49

provides a better flexibility because each server can enforce differently its own policy to
its own users.
B. STRUCTURE OF THE PROTOTYPE DEVELOPMENT

1 Main ldea

The prototype is mainly based on the object-oriented fundamentals, which are
perfectly supported by the Java programming language and the XML features. The user
of the system and its security attributes are represented as an object. Every file selected
by the user either for opening or for storing is parsed and an associated security metadata
labels object is created. The system compares those two objects and according to the
security policy, determines the response to the user’s request. The files related objects,
the user’s objects and the processing software are all kept and are al managed in the
server area, which is assumed to be a secure environment. The interface with the user is

achieved though web pages that are generated dynamically according to every situation.

As aready mentioned, the XML file's security attributes are mapped to a Java
object. Due to the structure of XML, it is aso possible to map every paragraph of the
document to a Java object and to manipulate each paragraph differently. Even though this
technique can be implemented easily from a technical point of view, there would be
problemswith the logic of the document itself. Accessing the paragraphs of a document
that are not alowed due to their security attributes could make the document non -
contiguous and potentialy difficult to understand. The only exception is when the author
of the document has the specia training required to write those multi-level documents,
which must be understandable, persistent and of course without revealing sensitive
information by inference. This is an issue that the Intelligence Community Metadata
Working Group has aready noted in their reports and conferences.

2. Description of System’s L ogic—Flow Diagrams

The first page presented to the user by the server is a smple html file, which
briefly describes the application and the necessary links to advance to the other pages.
One of the links is “Help,” which opens another html file with generd directions about
the use of the application and some answers on usua problems one might encounter.
Another link, in the main page is “User Login,” which opens a smple html file with a

form waiting to receive the user’ slogin name and password. Theinputs of the login page

50

are sent to the first Java servlet, called Login.class, which has the responsibility to

authenticate the user according to the user name and passwor d received.

index. himl
User Login
Help
h ¥
help.himl login.himl
User Login username
password
b 3
invalidUser. himl Login.class
User Login K Invalid User :I E@
Help
3
e ——

Figure10. Login Flow Diagram

The Login.class initiates itself and attempts a connection with the third—tier
database server. When the connection is established, this class queries the database using
the user’s credentials. The response from the database is processed inside this class. In
case those credentias are not vaid, an error HTML page is displayed with a respective
message and the appropriate options to continue. If the user's credentials are valid
according to the database, a number of queries are sent again to the database server to
retrieve the authorizations of the user and those files are then available according to those
authorizations. A UserBean object is created and attached to the new session. This object

will be used during the whole procedure.

After the authentication and authorization of the user, the control is passed to the
UserOptions.class that generates a web page with some of the user’s personal data, such
as last name, first name, and the available options. Those options ar e the main menu and
they are presented in a drop down list. When one of them is selected, the control is
passed to the UserSdlection.class. The UserSdlection.class does not generate any web

51

pages. It is only responsible for redirecting the control to the next respective servlet,
according to the user’s selection.

ImportToSave.class

OpenFile.class
UserOptions.class

1. Saveto Database

2. Open from Database

3. Open from External DB
4. L ogout

UserSelection.class

ImporiFile.class

Logout.class

Ry

Figure1l. Main Menu Flow Diagram

As can be seen in Figure 11, the user is presented with four choices. The first
choice, named “Save to Database,” is used when the user has created or copied afile
ingde his own machine and wants to send it to the server. The first servlet called in that
option is ImportToSave.class, which generates a web page waiting for a filename to be
sent to the server. The selection of the filename can aso be done through the “br owse”’
button that will initiate the “open file” window, provided by the operating system.
Choosing from the locd file system will be more convenient than writing the name of the
file. On this web page, some of the user’ s data and some other administrative information
that will be appended on the selected file are presented. The user cannot change any of
his or her data associated with the file, because this is done on the server side, and their
presentation on the page cannot affect their processing on the server, because the system
does not accept those kind of information from the user. The user can only change the
presented administrative information in order to characterize the file. Furthermore, the

52

user can select the classification of the file, which according to the enforced policy
(prohibits “write-up” or “blind-write”) could not be higher than the user's present
classification. The presented classification choices are only those accepted from the logic
of the system (e.g. “write-down”). Findly, the page displays the date and the time that
will be appended to the file in order to be used later as the key reference for the version
of thefile,

When the user inputs the filename and selects the “upload to the server” button,
the SaveFileclassiscaled. Thefirst task of this classisto initiate the upload procedure.
During the uploading, a temporary file position is created in the web server areain order
to accommaodate the file. After a successful uploading, the server parses the file in order
to complete a number of required checks. The first of them is to identify that the fileis an
XML file and that it is well formed and valid according to the Intelligence Community
Metadata Standard’s for Publications. This task is achieved by the Echo24.class that
parses the file using one of the “SAX Parsers’ provided by the “javax.xml” packet of
Java. If the file is well formed and valid, a FileTags.class object containing al of its
security attributes is created for that specific file. The system retain s the FileTags object
only during the required time for processing inside the server or until the end of user's

session.

During the uploading and parsing process, a number of messages are created and
presented to the user in order to give him or her a view of the procedure. If the system
encounters any problem or errors, during the above process, an appropriate message,
indicating the cause is generated and displayed. If the process is completed successfully,
the newly created FileTags object for that specific file as well as the UserBean object are
sent to the SecMetadataManager.class. This class acts as the security manager. The
important task that the SecMetadataManager.class performs is to compare the two
objects and to generate the decision regarding that specific file and that specific user.
When the user reguests to store the file with a different classification than the XML
security attributes contained in the file itself, an appropriate message is generated. This
operation helpsto prevent unintentional change of thefile' s classification, made by user’s
mistake or malicious code, to downgrade a document for disclosure to lower

classfication users. For example, when a user currently logged on as “SECRET,”
53

requests to save a file as “UNCLASSIFIED,” but the XML file contains security
classification “CLASSIFIED,” then the system generates an “downgrade’ message to
warn of the difference. If the user confirmsthe change of thefile from*“CLASSIFIED” to
“UNCLASSIFIED,” then the system downgrades the file and saves it in the respective
area with the changed security attributes. According to the policy, there is no case for a
user to have the capability to request the system to save afile with a classification higher
than the classfication for which the wuser is currently logged on. The
SecMetadataManager .class is the one and only security enforcement module, which is

always invoked for security decisions when afileis saved to the system.

ImportToSave.class SaveFile.class
successful process update DB
confirm

Datahase

SechMetadataManager.class

Figure12. Saveto Database Flow Diagram
Viewing the menu, the user may select the second choice named “Open from
Database.” It is used when the user wants to retrieve a file from those stored in the
system’s database. The first classis called OpenFile.class. This class opens a connection
with the database and retrieves al the files that are available and can be released to the

specific user according to his or her security attributes. User can aso input filename
54

criteria so system can search among the releasable files. This operation is performed by
generating queries to the database, according to user’ s security attributes and the enforced
security policy. The OpenFile.class is the security enforcement module, which is aways
invoked for security decisions when afileis retrieved from the sys tem. The name and the
version (simulated by the date and the time the file entered the database) are presented to
the user who must select one of the files to open. In the case that a user has a high
classification, the files are separated and displayed in categories according to their

classification levels.

Operating System

MainApplet.class

Figure13. Open File Flow Diagram
The user sdects a file and its respective filename is sent to the same
OpenFile.class, which retrieves the file from the database, creates a fileTag.class object
for the file, and then gives the user two opening options. The first oneisto send the file
to the user’ s workstation to directly open the file, where the underlying operating system
will activate the default XML editor or where it will save the incoming file to a local

directory. Asit is mentioned in the beginning of this chapter, the user’s operating system

55

is assumed as untrusted. The other opening choice is to send the file to the user's
workstation to be processed by an applet smulating a distributed XML editor residing in
the server. The first choice gives the user more flexibility but requires a powerful XML
Editor installed in the user's machine and a well maintained, regarding the security,

operating system. On the other hand, the applet-based XML Editor might restricts the
user’s capabilities but could also provide better security features due to the reduced user
interaction. Furthermore, in an applet-based editor, many customized options, specific to
the organization can be added or removed at the same time for dl the users.

Associated Server

ImporiFile.class ‘

OpenFile.class

Dratabose

Figure14. Open from External Database Flow Diagram
Returning again to the user's main menu, the third choice, “Open from Externa
Database,” is used when the user wants to obtain a file that is kept and controlled by
another server. It is assumed that the user's server is dready associated with other
servers, running the same or similar implementation, and they have agreed to share their

XML documents. Obviously, the number and the kind of the associated servers, depends

56

on the policy the organization currently uses and of course can be modified a any time

restricting or allowing access.

If the user selects the third option, the first class called is ImportFile.class, and
this in turn generates a web page on which the user must select the affiliated enclave or
organization whose server is associated with the system. There is also a field where the
user can input the complete filename or any portion of it so that the system can search
among the releasable files. When the submit button is selected, the ImportFile.class
initiates a connection with the respective server by calling the Login.class of the
associated server. After a successful connection, an authentication and authorization
occurs, and when they are completed successfully the releasable filenames and their
security classifications are returned. The user’s server has the responsibility to determine
which files the specific user is allowed to obtain. Another possible approach could be to
send the user’s object to the associated server which will be responsible for making the
decision. This approach is not recommended because it could reveal many information
(directly or indirectly) about the users related to a server. The intention is to share only
the documents and not the users’ infor mation.

The ImportFile.class compares the classifications of each file with the user's
classification and keeps only those files that are releasable to the user. If the user has
inserted a filename or any word previoudly, the system searches among the file names to
find those that match. Finally, a web page is generated and the results are displayed
through the OpenFile.class, which now assumes control and handles the file similarly to

the previous choice.

The last option in the user's main menu is “Logout,” which closes al the
connections, deletes any temporary files and kills every object created during the user’s
session. The respective class is named Logout.class, and after a successful execution it

generates aweb page displaying a greeting message and links to the home page.

As a future work, many other options can be added to the main menu extending
the performance of the implementation. One of those options could be the capability, for
specifically authorized users, to save adocument in an externa database.

57

3. Analysis of the Java Servlets
The prototype is implemented using Java servlets running on the latest version of
Apache—Tomcat. Their objectives, an analysis of their functionaity, and their main

methods are presented below

a. Login.class

The main objective of the Login.class servlet is to authenticate the user
and to retrieve his or her authorizations. Login.class is the first serviet called after the
user inputs his or her credentials to an HTML form. The Login.class begins by
initializing the ServietConfig.class, which is its super class and thus inherits many
properties. The next step is to open the connection with the third-tier database calling the
JdbcOdbcDriver .class provided by the Sun Microsystems. The connection object created
is attached to the session. The Login.class can accept either a GET or a POST request

from the html file.

The first method called is validateUser, which makes the query to the
database to determine if the username and password entered are contained in the
database. When the database determines that the user’s credentials are valid, a number of
other methods are called in order to retrieve al the user’s information. The user's
personal and security information and any authorized files are all packed in a
UserBean.class object. Then the startSession method is caled. This instantiates a
RequestDispatcher object, initiates a new Session abject by attaching the newly created
UserBean object, and transfers the control to the next serviet. In case of any error or if
any exception is thrown, a respective error message is passed to the exitPoint method.
This generates a dynamic HTML page displaying the cause of the problem.

b. UserOptions.class

After successfully authenticating and authorizing the user, the Login.class
passes the control to the UserOptions.class, which creates a page presenting the user’s
information and the available options. The first method called is printData that obtains
the persona and security data from the UserBean object and displays them to the user.
The next method called is printOptions that creates a drop-down menu displaying the
available options to the user. Thereis dso alink in case the user wants to return to the

previous page.

58

C. User Selection.class

The user’s selection is submitted via a POST request to the next serviet,
the User Selection.class. This servlet’s only responsibility is to obtain the selected option
and redirect the control to the appropriate serviet. The doPost method, using a number of
“if” statements, determines what the selected option is and then calls the startSession
method that dispatches a RequestDispatcher object to the respective servlet.

d. ImportToSave.class

The abjective of the ImportToSave.class is to create the necessary page so
that the user can input some required information about the file and, of course, thefile's
name. The first method caled is the printSandardMetadata that draws a table and
displays the user’s data that will be appended to the file. The user cannot change those
data. However, by cdling the dropDownClass method, the user can change the file's
classification, providing that the user, according to the policy, has an equa or higher
classification. The dropDownClass method displays and permits him or her to choose
only those alowed. In a similar way, the dropDownCountry method alows the user to
select the countries to which this file will be releasable. Adding more methods like the
dropDownClass or the dropDownCountry, an implementing organization can alow its

users to select more options according to its policy.

After the printStandardMetadata method, the control is transferred to the
inputFile method that creates the text field used for inserting the name of the file. This
field is created by the “INPUT TYPE='file " HTML tag that aso provides a browse
capability to the user. The necessary submit button, labeled “Upload to the server” is aso
displayed as well as a “Reset” button. Finaly, the exitLinks method is called displaying
the links to cance the session and to login as another user or to go back to the main menu
page and select another option.

e SaveFile.class

The name of the file selected by the user is passed to the next serviet,
SaveFile.class that is responsible for retrieving the file from the user and after a few
checksto saveit in the server. The method uploadFileis called within a“try-catch” block
in order to be ready to catch any 1/O exception that might be thrown by the process. A

temporary directory and a temporary file are created in a specific server area to

59

accommodate the uploaded file. Due to the selected way of uploading the file (through
the“ INPUT TYPE="file " HTML tag), the rest of the passed information accompanying
thefile arein the beginning of the input stream. The necessary processing will distinguish
and separate those parameters from the file itself. Moreover, at this point, the system will
determine if the name of the fileisavaid XML filename, and if the file is starting with
the XML version declaration. After completing those checks successfully, the reading-
writing procedure starts.

After the whole file has been saved to the temporary server area without
any errors or exceptions, the checkingFile method is called. Using the temporary name of
thefile, the checkingFile method creates an object of the Echo24.class, which will parse
the XML file. The method parseFile of the Echo24.class is called obtaining the name of
the file and the parsing procedure starts. The parser used by the Echo24.class is a
SAXParser from the SAXParserFactory class of the “ javax.xml.parsers” package. While
parsering the file, a FileTags object is created by the parsefFile method and returned to
the checkingFile method if no errors are encountered. Returning a“null” FileTags object
means that the parser found validation errors in the document, so an appropriate error
pageis created.

When the validation-parsering process is completed without errors, the
FileTags object as well as the UserBean object are passed to the
SecMetadataManager.class. The main task of the SecMetadataManager.class is to
compare the passed FileTags and UserBean objects and to return the decision. In this
specific situation the file is checked to determine the classification in which it will be
stored in the server. The decision can be “auto-downgrade”, “downgrade,” “upgrade” or
“normal.” “Auto-downgrade " means that the file was characterized by the user with a
higher classification than the specific user is permitted. So the system will automatically
downgrade the classification of the file due to the user’s current logged on level. This
feature enforces the policy that prohibits users to write in a higher level than the level
they are currently logged on and could not be used as a normal procedure. If a user wants
to “downgrade” afile that is already saved in the system with a high classification, he
must log on, at least in the same level asthefile. Thedecision“Upgrade” meansthat the

user has the authority and asks to save the file with a classification higher than the file
60

already contained in its security attributes. It is actually only an observation of the
system, which will not have any negative impact on the overall security of the system.
Thefinal possible decision is “normal,” which means that the security attributes are in

agreement.

During the above procedure, the system generates appropriate messages to
inform the user about the progress. Assuming that all the procedure are completed
without any errors, the system displays the decision and waits for the user’s confirmation.
That confirmation will trigger the transfer of the control to the next servlet.

f. UpdateDb.class

The next servlet called is UpdateDb.class, which asits name implies, will
mainly update the database. First, the copyFile method is called in order to simulate the
transfer and storage of the file to the database server and to an isolated secure area of the
system. The next method called is the updateDatabase that updates the tables of the
database containing the metadata of the file.

. OpenFileclass

When the user selects the option “Open File” in the main menu, the
OpenFile.class servlet is caled. The main task of this servlet isto coordinate the opening
procedure either for afile saved in the local or in an associated server. The printAvaFiles
method displays al the files that are available to the specific user. Those files are
retrieved from the database through the findFiles method, which opens a connection with
the database and queries the respective table containing the file's metadata. Similar to the
printAvaFiles method is the printServerAvaFiles method, which is used when the files
are obtained from one of the associated servers. The available files are displayed with
their name and their version, namely, the date and the time saved in the system. The
name of each file is presented as a link. When the user sdlects a file, the same
OpenFile.class is reactivated but with a different sequence of methods, which are,

determined from conditional “if” statements.

The system provides two different options to the user to open thefile. The
first choice is by using the operating system’ sincoming file options, which in the case of
Microsoft Windows can be to open the file by the default XML editor or to save it to the

user’s machine for future process. The default application that Windows uses to open a
61

file can be changed at the “Folder Options’ contained in the “Tools’ menu in the
Windows Explorer. The tab “File Types’ will display the list of the file extensions and
the applications to which each of them are associated. When the user has not defined an

application for a specific type of file, the Internet Explorer will be used.

Another choice that the system provides is an applet-based XML editor
that can be loaded on the user’s machine a the time afile is requested. This capability
simulates a distributed XML editor, provided by the server in the case where the user
does not have one ingtaled locally. It is implemented by calling the MainApplet.class,
which is a Java applet extending the functionality of the Japplet.class contained in the
java.swing package. The name of the file to be opened is passed to the MainApplet.class
applet using the “PARAM NAME=filename VALUE=TheActualFilename “ html tag.

h. ImportFile.class

The ImportFile.class objective is to initiate the import procedure from one
of the associated servers of the system. Its basic method is the inputUrl that creates one
“radio” button for each of the affiliated servers and a text field for the name of the
requested file. The system accepts an empty filename and trandates as “find them all.”
The necessary submit and reset buttons are also created and displayed to redirect the
control to the next servlet and to clear the field, respectively.

i FindUrl.class

The requested filename and the associated server where thefile resides are
passed to the FindUrl.class. This will establish a connection with the server and then
retrieve the file. Using multiple “if -else” statements, the FindUrl.class determines the
progress of the procedure. In theinitia stage, the getConnected method is called with the
name of the server as an argument. The getConnected method using a “try-catch” block
encodes the URL of the selected server and calls the ServerLogin.class. The
ServerLogin.class, as the name implies, is a login class dedicated to the authentication
and authorization of the calling server. Its logic is similar to the Login.class mentioned
above, which authenticates and authorizes a user. After an established connection and a
successful authentication, the ServerLogin.class of the associated server retrieves the
available files and transmits their metadata back to the calling server.

62

The FindUrl.class receives the available files from the associated server,
and assuming that a filename (or a portion of it) has been entered, disregards those files
whose names do not match. From the remainder, those that do have matching filename,
the system compares the user’s security attributes to those of each file. If a file has a
higher security classification than the user posses at this session, then the file is removed
from the list. Finally, the remaining list of files, if any, is passed to the OpenFile.class,
which will proceed to the opening procedure as already described. The only difference
now is that instead of the printAvaFiles method, the printServer AvaFiles method will be
called.

J- Logout.class

The Logout.class purpose is to terminate the user’s session. Its basic
method isthe processRequest that ends the session by calling the invalidate method of the
HttpSession class of the javax.serviet.http package.

63

THIS PAGE INTENTIONALLY LEFT BLANK

V. EXPERIMENTATION

A. DEMONSTRATION SCENARIOS

1 Introduction

The experimentation was conducted on the prototype implementation to
determine its usability and performance characteristics. The potential users of the
prototype can be either “internal” or “external” to a given server. Internd is when the
user is locally connected to the server. An external user is not locally connected to the
server, but islocally connected to aremote server. The demonstration scenarios presented
below are intended to mimic the actual process anticipated in a lar ge organization or in
many associated medium organizations.

2. Scenario 1—Internal User Storesa Document to the System

The objective of this scenario is to demonstrate the process required when an
internal user authors an XML document and wants to stor e it in the system, making it
available to other users. It is assumed that the user is within the organization, and the file
is saved inside the local machine (either on the hard drive or in any other means
accessible from the local file system).

eI T L TE]]
Ee g per go ERNabc DeE pEEles HeR
o uﬂJ G J [R [T o g | [wrani | "\550 m
- mn | Elee WMk Hore S Aode B Moteope. Sy Soomch | (ionkmonie:
|__|J e MR Sty Lok Tags - Mansd Traos Iu i [
Nawval Postgraduate School
4 oon t e r e ¥, C a |l i Formn | a
Hams TUser Lagzing

Logn Hure [m

Fageward

Logm |

RIASTER THESIS - METADATA SECTRITY LABEL TAGS

O |l W U, IR LD M Fl s sy
EN 0 A G) | S Dorm (03) =

Figure15. Login Screen

65

The file could have been created in the loca machine using an XML Editor, or
downloaded or copied from a disk. Finaly, it is assumed that the user has a browser

installed and has aready registered in the system and has acquired a valid username and
password and thus can be authenticated by the system. The screen shots shown in this
scenario employed the Netscape Navigator.

B e piana Secusity Label Tags - Master Theshs - Retacspe =101 =]
= Dim [df Yew Lo Qocrwrks Jook ke Help

- @auaa Qlammmw.m ||_q.5u|:h| ‘::5-0@

m M A m e 3 Rak B resope O Seah DBk
;]'vvu-lu--:-.-uq-umrm-mn—| I,:

Naval Postgraduate School

Monterey, cCalifarmnia

Hame Fersomal Data

Ueer Loan Lpt Hame . Leewin

Frsttlame : Tem

Serarity Attribubes (presented here saly for demao)
Sevce Marne © CIA

Sumce Paaion. USER

Semce Classficatiea: T8

Comtry [D: UBA

Yo ophons ars

Sena i Dedabase

[£]

Oy from Cearnbase
st froinn Exdermial D eiebe

MASTER THESIS - METADATA SECURITY LABEL TAGS

FOf cosarnis el QUi ions, ke conkl i Paros oned
@ = & OF [| Deswet: Cora (830 ol ==

Figure 16. First Option in the Main Menu
The authenticated user selects the first option (Save to Database) in the main
menu after the successful authentication and authorization of the system. The “Save to
Database” screen is generated waiting for the user’ s selections.

Selecting the “Browse” button, access to the local file system is provided to the
user in case the exact file position is not known. The alowed file classifications

presented to the user cannot be higher than the user’ s classification.

66

uate School

rmo-m.m i e r A oA
a2l
i
T LITERE -
___a F!L:'.'I'B Wad How 13 224116 FST 2002
[(A T :E.T-luﬂmt T
T | T
I Sernics |
b Waer
] C E TS :‘I:I'-e-r Dy T |'I:I‘3A
i Fis Clwaiicativn = = E““"‘“ TR
E;Dﬁﬁﬂvn Wt [For Tnpemal The e

Betors yon rubmi your JOML B yea bovs b complrts ALL the WETATATA fside beloes

Ener the e belswr
Browza. | Upicadfimiohesersr | Cloarisk |
len apwin s apafber usee o

302 mpan pous cplins

mmnm MTADATAWLMTM
| -mmﬁm
B A D e Dora 0) ETE] EE T
et | II!'EIEEN | [t [rtatei e 0T e | B | W) | [(FGEE amam

Fi gure 17. Browse Locd File System

Naval Postgraduate School

HWonterey, Caiilfrornia
|
Home Uplsackag £ T the server gde
Thnt Licd Pl was accessfidy wleadad
z e A F s Pile was panzesd s cesetidhy | 111

Fik's Eccunty Mctadaia Labch &rc compancd bo youn ...,

i u.:u.w Gmnwﬂu.d i
¥ The Be 12 akesdy marked 1 £
e and oo haws agked 1o b gared ag TE

IE pou sgpes confrm
I el w0 ek e a chings g back

mewﬁr
MASTER THESIS - METADATA SECTRITY LABFL TAGS

B WO e e e it [evmm S
et | Y g B[] |) | [et Ii__—ﬂ.lwmm-sim | Sjctapisr svens.. | [FRD AL 1mmamm

Figure18. Uploading and Parsing File Process

67

The system generates messages showing the progress and requests the user’s
confirmation to proceed to the final step of updating the database if there are not any
errors or exceptions.

3. Scenario 2 — Internal User Retrieves a Document from the System

This scenario demonstrates the ability of the system to provide an authorized user
with one of the files stored in the database. It is assumed that the user is within the
organization and has installed an XML editor or the Java Virtua Machine (VM) on his or
her own machine. Moreover, it is assumed that the user has customized the local
operating system to initiate the installed XML Editor when an XML fileisreceived. The
screen shots shown in this scenario were obtained from Microsoft Internet Explorer 6.0.

T #retexlats Secerity Labed Tags - Master Thests - Mouselt memet Enpberer 2|0l =
De bk er Ppemim Tmk fek [o |
e - = - Q) A Dt Gt s 3 - S DR
dupenss [b oo BORDY ral ackad el b =] @6 Lk *
Naval Postgraduate School
Monterevy, caliFarnia

Hoie: Persoual Data F
User Login LastMlame: Lewis

Firet Namre : Tim
Hebo Serurity Aivilbeins (prosented beee sady G deses)

Farece Hame © CLA
Serace Fosen: UEER
Jeruce Cheaficstionr TH
Countp I URA

Tour cptiom are

{Cwen Fom Dalshase =]
Sowe 10 Clchata

Cipen fam Edemal Diishsns
L e
Fogim aen al ancther wer -

MASTEE THESIS — METADATA SECURITY LABEL TAGS

1 For pormwent nd aestions . pleysn conctes Panas aesl
L] B ol

Figure19. Second Option in the Main Menu
When the second option from the main menu is selected, the available files to the
user are displayed. They are categorized depending on their classification, providing that

the user has a high enough classification to alow him or her to view many layers.

68

LESRTEL = LT & -
B tgorim looi e = . = ‘ﬁ
bk - o+ -] A e (aromtes @eeka b G- o - S @R

agetees [} o (st SOt e T

Waval Postgraduate School

Moo nter e ¥, Californla
& Fw Hoame - Thn &l
Hwrurity Anrlhoe s (preveated hers saly Tar d sy
Sereece Blune © CLA
Trrbome Serwne Beciion USER
Hek Semce Clmsicaion T8

Ceomiry ID: USA
ek om e ks ek o open e eipecie Be

Fiez wah claszfizshen TH
sxa FE .. Werson Dure | 200DHT . w30 2048

Fica wath claaaficshen CL
sk FEmnl - Werexd Dare 2000 . w20 ZLI1E

Fiea wath claasficshen SE

Fies with clazzficshen (TS
cxa-l-smerial o . Version Daee 20021028 . nme | 2ZT.10

a1 -frieind o . Wenson Duos - J003 108 e 522 36

asterranl2 arnd . Wernion Dode < 20020118 . e : 24556

celptrecs o Yeraon Dale - 200201 105 . me: 24824

bl e .. W eeon Dade | ZI021 10 . doee ; 3R IATF

e aal ard Wernon Dwis - 20020117 B 21219

S - R, = TR, S VT TE OO P x|

MASTER THESIS - METADATA SECURITY LABEL TAGS

For cormenis aed cueGione, pis

gl et parrn e o el [e

Figure20. Available Filesto Open

el e

Bo b o Raemioy Inon Hok

S - e - | Dt areeres et 3D AW D@ E

nuen L4 e N

Mawval Postgraduate School

M oaonter ey Califoarnia

S Pervonal Trais

Cht Looginy Tapt Pt | Lol
Froi Hanc ;. Tan
AT Bucurity Astributey (prevested here ssly Goe desssd
Servicr Home . CTA
Horemre Boviion. TEER
Zrree Clamfirsion T§
Sty I UTEA
Beleckod file : ZO0E--] 1 -Fead 256 raremal 2 sxal
T yran wank bo opan the Bo with yow ewn XML E dior
o Vo e oF o fanae e Ok b

aE 1 iy thes T Tt e il e e ML B

BIASTER THESLS - METADATA SECURITY LABEL TALGE

e e T S S P
o o s B

Figure21l. Choose an Editor Screen
Each fileis alink, which, when selected initiates the next page presenting the two
options of how that file can be opened. If the user chooses the option of the installed
XML Editor, the operating system presents the available options, which either opensthe
file using the default Editor or saves the file localy for future use.

69

T ataraicle Mpdap L Lity wtust and B lrpangn g hm p legbaoed sowiee sy i wllan b oy HT ML sy, bd wech e cm bl ed mack meony
Pl WH . Bl mhi b '™ fu FML ke AT bk S et red BT i
et pri<oam S ML domaranh wead danHy boa b dap b e desumank dede Prr gl @ Paoees U el Spvtenk (FT) map svd e o S8 de ot S Rpraedy B g minlee
PN B0 e e e o 18l e

AL pamib dnnamar sdbon ta £ra ruep b dasl e arp e anatiha gvurnt srkeoo &k omi ki sewrmakag
| Ve 50 W et o SRS, WM A TN E MR W WW s, o] W i L v s, i e i, B oy Tl e Lt T e e
Corumanitp (] MEarly bagan stadying SML e 1 peteudal ums s s rman ectnol gy b cosats, manags ard Sosminsts infs B geares contat

Figure22. XMLMind Editor Opened the File

If the user chooses to open the file using the applet-based XML Editor and

providing that the Java VM isinstalled, the applet is loaded and initiated and presents the
selected file.

70

'
PP | ks ®
wharid wa el e 1T e e ool gt LITF-EFe Tl
il o i il 0L B P w8 LI ol e sl 5 o) Dy ARDE PO RIS J0ni @ RAWVATE) - »
i OGS TPE Ak o g B TE I ndpiicca e cioil Bl e afe il deil- M EF-adicl e wl B2 «
aificice
“Fublic ation Wt gfar
=i iy ehindren Metad nia
=kientifiarLisi
g umeniet
= i rrea Cib= 2
e L]
al TH
[0 Docursct . o Thieehermsible Peluriong Canguegs (XD i5 4 oo and dafi- Tormating knguegs e les a
[conman: nckban with WLSF S L IN0Nwest fiap. vased syokaon veny shsndar bo the HTTL spri, ol sosch e copalibs ool s fonse
DI':'“T"W‘ Afile Aegle. [k nol only prescobes bud syles botalso defines data types far coos platforn
D Eemert Arile f corerasscation. XL dacomenis coman andy s, oot Tenmating bstnicties, 5o
[Tae nppbcations ful procese 3P4 darumends mad decids how b dispiyy the drcument dais For
=] E kit Pubd ko ridata tada \mampie s Pecpomd Digitval Asristant (PO meg render an FML decument dffermily then &
Citee wineless phioge af a degkdog compune wold refder il dorore
= 1 Elanent Faa
[Tt
& [Elenent Fan
[Tae
“m i, i e —

st |) 0 BT (S0 [0) | | i | e | sk § Bchons. | Epitecd. ([(SO BEE e
Figure23. Applet Based Editor Opened the File

4, Scenario 3 — External User Retrieves a Document from the System

This scenario demonstrates the ability of the system to provide one of the files
stored in the database to an authorized external user. It isassumed that the user belongsto
one of the associated organizations or enclaves that share their documents. After the
desired file is retrieved from the associated server, the procedure is similar to the
previous. Thus an XML editor or the Java Virtua Machine (VM) must be ingtalled on the

user’s local machine.

71

& Thesis -
D [Aea Pparim [uh fep

RO oEHt Ieenet Evplarer

2|0l

G« o - G A Beweh b @ven o3-S HE

dupnss [b oo BRIy el ackad el < e

=] e Lk @

Naval Postgraduate

Monterey, CaliFfFarnia

F

Persomal Data
Diaer Logn Last Hame: Lewim

Fingt Hamre : Tim

Serurity Arvilbetos (proseated biee saly G deaes)
Farece Hame : CTA

Zerace Postien: EER

Fervge Cheafotion TF

Clertry I TIRA

Your cpfiom e ..

| Open Farn Exiemal Databae =]
S [0 Dalcbasa
Cpen from Clatshase

L g
L Al arrher msr

MASTER THESIS — METADATA SECURITY LABEL TAGS

Fior oot nd puetions . s conacl e Panos el

School

il

| B Loy i

Figure24. Third Option in the Main Menu

s Hargsall Dt Engplee

R B e Frewite Todd Hep

Dl - - | e oo Erweds 3 - B E- DG E

adfi=]

+ ke I-d].lmrrbul-ml P bt ki e ik

=] ém o

Maval Postgraduate

Hoenterey, Caoalifornia

Fervonal Trata

Lot Flaaves . L ol

Fiet Hoame . Tn

Hoeuriny Anvibiios (g senntd hore saly Toe deses
Serwae Dl | CIA

Secmae Besfion USEH

Sermce Clesficstion T8

Comnbry D RS

Hema
Wowr Login
Hel

Cheose it srver oe nd die B
F MFZ ¢ LCCAL ¢ OTHER and then gae tie Bename or just 8 word contaned i the Blename

[Fuomi | Aesdl |

BMASTER THESIS — METADATA SECURITY LABEL TAGE

i i o

]| A S E R E L | Eewen | S| Sk | Scsn | St [[5 meaes
Figure25. Choose an Associated Server Screen

72

School

I B v

LRGEEL mem

The user selects the server, in which the file resides as well as the name of the file
or at least the beginning of it. The system attempts a connection with the selected server
as soon as the “ Submit” button is pressed. Upon a successful connection between the two
servers, an authentication and authorization process is started. When comple ted without
errors, the available filenames are retrieved and sent back to the requested server for
further processing. If that processing results in afile that matches, the inserted filename
can be released to that specific user and a new request is sent again to the associated
server to pass the file itself. In case the processing results in more than one file, then all

of them are presented to the user to select.

B et ok S it el TR - Ppct v Thets - M paaalt [renet Eambares il x]
e Edt e Faamies Tos HeD | |
sovah v - @ A | e areen e 3G dE - @R

2ess 48] bty ({lonahoet: BB rnatacl inch s, i = ks

Maval Postgraduate School

Mo nter & ¥, Califorfnia

1=

exa SEwmml .. Verswmn Dare : 200251 e 204320

mxa SE tewaonl . Werdon Date - 200251 tare 204419
Wersicn Dabs - 200201 . ke - 231241
Wersien Dabe 20022 ... fme : OZS
Warsion Dabe | 2002517 . ne 5 304
exa SE pror3 3 Version Dube © 20017 | ome - 2230055
eva SE oo 2wl Wersion Dabe - 2002419 . bee : 125330
e SE pew Dl - Verson Dabe - 20022 bee 233150
cxa SE mewamd . Wooien Date - 200210013 ;e : 13267
aga SE 2agnl Werson Dite - 200X 3 Gme: 1592520
s ZE pre-2al .. Versien Dabe - 2002710073 1
. SE e aml ‘J'erarﬂ Cobe | 200" 10013 .. ime - 1#35 32
aqa-1-omternl g . Wersion Db - 20031035 . Gme : 132326
eu 1-weed sard ".-m.c-n[‘m JJL'IJ1I’.~'25 tige Iv"'SJ

i

Home
Hep

:Fl!l nrhnr- Mocalber IS"S[I mr-s'lums!rrlw a-'lhcl-asn.ﬁnrr'ﬂ il
Fies #hﬂr- Moralhes Iﬁﬂfn!uhln-s!rrkl-"wh-:hsnﬁnrrﬂ "'.E

Fiex at hitp-Macalbeat- 2080 et dxtalcervlat! with chenfcshon TS

|0E‘ Ggaga i ancthes USer

oF ZEE your ophons

2l

MASTER THESIS -~ METADATA SECURITY LABEL TACS

For carwwenks 5o eSO, piesse cantsc e Pz erl
umwu-m [[P el ik

| ot 8 B | et e | s, J$Dm .| ke ‘IH_',':'.'"*'H"E M|.|I£'r|u|||m-| mumlg-_'"ﬂ|
Figure26. Available Files on an Associated Server
From the point where the file itself is retrieved from the associated server, the

procedure is exactly the same as the opening procedure when the file is saved locally.

73

B. SUBJECTIVE PERFORMANCE EVALUATION

The prototype development and implementation is based on the Microsoft
Windows 2000 operating system, the Java 2 Enterprise Edition integrated platform and
the Apache-Tomcat web server. The Microsoft Access simulates the database
management system. Various XML Editors such as “XMLSpy,” “XMLMind” and Web
browsers, such as the Internet Explorer and Netscape Navigator are tested and used to
develop and test the system. Java platform, Apache web server and Netscape are freeware
and open-source products making them easily customized to the specific needs of every
application. Almost al of them (except Microsoft Access) have adequate capabilities to
support general requirements to manipulate, distribute and store XML documents.

However, because the system design extensively uses security markings that are
represented as objects, and because the system itself bases its decisions on those objects,
a high assurance operating system must be used in an operational implementation. The
high assurance operating system must be used to accommodate at least the web server
and the DBMS but it is also highly recommended for the user’s environment. When the
performance requirements are similar to those used in the electronic business world the
main concern is focused on the security of the underlying operating system, which

supports the security of the entire implementation.

The Apache-Tomcat web server has a suitable overall performance that has made
it one of the most popular and most reliable products in the highly demanding business
world. Its open-source base and its efficiency in almost al the operating systems make it
a good solution. Furthermore, because Apache-Tomcat is coded and based in Java, any
application using the same programming language creates a better combination with even
better performance. Java acquires alarge number of capabilities and advantages that can
expand and can improve the efficiency of the implemented application. Due to the object -
oriented structure of Java, any new features or improvements can be easily attached in the

future, keeping the entire solution always updated.

Regarding the specific tools an end user must use, such as web browsers or XML
Editors, most of the commercial products tested were found to provide acceptable
performance. However, there would be even better results if an integrated product could

74

perform both jobs (browsing the web and editing an XML document) with the same high
level of efficiency and performance. This may be a worthwhile area for research and
development in the future.
C. CONCLUSIONS - LESSONS LEARNED

XML is one of the most promising and rewarding technologies of today’s
demanding world. Especially when the environment or the platform is object oriented,
XML technology can be easily integrated and help to increase overal performance. |
have shown that by using XML and its metadata, developers cannot only manipulate
documents fast and efficiently but can also do so securely and with flexibility and
interoperability.

The use of XML inside a large organization can improve the performance and the
efficiency in the production, distribution and storage of doc uments while sharing those
documents among various enclaves. Furthermore, XML itself provides the capability to
attach security attributes to granular elements. This capability makes XML much more
advantageous than HTML. | have shown that many XML security concerns can be
addressed by using current security technologies. Encryption, Digital Certificates, Digital
Signatures are among those technologies that can assure the integrity and security of

XML documents.

A highly secure operating system must be slected to accommodate and to
support the main components of the implementation. Even though Microsoft virtually
dominates the market and improves the security features of its products every day, afew
other choices (Unix, Solaris) can achieve much better security. Starting from an operating
system with advanced security capabilities, an implementing organization can select
among the various existing frameworks. Almost al the mgor vendors of the market
(Microsoft, Sun Microsystems, Oracle, etc.) have developed technologies that alow
programmers and their organizations to use XML and its features. It is only a matter of
the specific organizational regquirements to determine which framework to use, due to the
fact that all of the frameworks provide interoper ability and extensibility through XML.
Sun’'s Microsystems Java 2 Enterprise Edition and Microsoft's “dot “ NET framework
are the most powerful, robust and complete frameworks to support and implement an

efficient and secure solution.
75

Finaly, agreat variety of products and applications, such as Web browsers, Web
servers, XML Editors and Database management systems, can be used on top of the
selected framework to support specific needs. Many of those products integrate broad
capabilities and provide fairly complete solutions. The final selection of those products
should be according to the specifications and requirements within the organization.

76

APPENDIX A. APPLICAT ION PROGRAMMING INTERFACE (API)

The Application Programming Interface (API) presented on the next pages is
created by the “javadoc” utility, provided by the Sun Microsystems Java 2 Standard
Edition.

77

Package dbsection

Class Summary

DBConnectionBean

This class implements a bean that is used for many other classes
to process al transactions with the backend database.

Echo24

The class Echo24 is responsible for parsering the passxd file and
to extract dl of its elements and attributes.

FileTags

The class FileTags is responsible for creating an object
containing all the security elements and attributes of a specific
file

FindUr|

The FindUrl class defines a servlet that is respoisible for
connecting the system with the requested server, for retrieving
the releasable files from that server and for deciding which of
those files the user is alowed to access.

ImportFile

The ImportFile class defines a servlet that is respoisible for
creating aweb page to help the user input the file and to help the
server know where that fileis located in order to open it.

ImportToSsve

The ImportToSave class defines a servlet that is responsible for
creating a web page to help the user input the file to be: saved, as
well as some information related to thefile

Login

The class Login defines a servlet that is respoisible for

authenticating the users trying to login.
' L ooout This class defines a servlet that logs out a user and eads his or
rogout her session.
M etaTags The MetaTags class codes the tags of afile as an object.
' The class OpenFile defines a servlet that is respensible for
OpenFile opening any file auser may select. Either thefileis sared locally
or in another server.
The SaveFile class is responsible for uploading the fil 2 from the
SaveFile user's machine to a temporary area of the system ancl to check
and parse thefile.
The class SecM etadataM anager is responsible for comparing the
SecM etadat aM anager |received UserBean and FileTags objects and to make the
necessary decision according to the policy.
IServerLo i The class ServerLogin defines a servlet that is responsible for
SETVerLogir. authenticating associated servers trying to login.
UndateDb The UpdateDb class receives an already parsed file, uidates the

database, and saves the file in the "secure” server area.

78

This class defines a bean used to maintain the user's data during
UserBean :
O the session.

The class UserOptions creates a page displaying the user's
UserOption s information (personal and security) and the available options for

that session.

The UserSelection class is responsible for getting “he user's
User Selecticn selection from the main menu and for redirecting the control to

the respective servlet for further processing

79

Hierarchy for Package dbsection

Class Hierarchy

(o]

class javalang.Object
) class dbsection.CaendarBean

o class dbsection.CommonData
o class java.awt.Component (implements
java.awt.image.lmageObserver, java.awt.MenuContainer,
javaio.Seridizable)
o class java.awt.Container
) class java.awt.Window (implements
javax.accessibility.Accessible)
) class java.awt.Frame (implements
java.awt.MenuContainer)
0 class javax.swing.JFrame

(implements javax.accessibility.Accessible,
javax.swing.RootPaneContai ner,
javax.swing.WindowConstants)

0 class
dbsection. TextSamplerDemo
o class dbsection.CustomerBean
o class dbsection.DBConnectionBean
o class org.xml.sax.helpers.DefaultHandl er (implements
org.xml.sax.ContentHandler, org.xml.sax.DTDHandler,
org.xml.sax.EntityResolver, org.xml.sax.ErrorHandler)
0 class dbsection.Echo24
0 class dbsection.FileT ags
o class javax.servlet.GenericServiet (implements java.io.Seridizable,
javax.serviet.Servlet, javax.servlet.ServletConfig)
o class javax.servlet.http.HttpServlet (implements
javaio.Serializable)
o class dbsection.CreateFile (implements
javaio.Serializable)
o class dbsection.FindUr| (implements

javaio.Serializable)

) class dbsection.|mportFile

o class dbsection.|mportToSave (implements
javaio.Seridlizable)

) class dbsection.ListReservations

) class dbsection.Login

) class dbsection.L ogout

0 class dbsection.OpenFile

0 class dbsection.SaveFile (implements
javaio.Serializable)

class dbsection.Server L ogin

class dbsection.UpdateDb

80

(o]
(o]

) class dbsection.User Options
) class dbsection.User Selection
class dbsection.M etaT ags
class dbsection.SecM etadataM anager
class dbsection.ServletUtilities
class dbsection.User Bean

O O O o

dbsection
Class DBConnectionBean

javalang.Object

I
+-dbsection.DBConnectionBean

public class DBConnectionBean

extends java.lang.Object

This class implements a bean that is used for many other classes to process al
transactions with the backend database. It is a unique point of connection with the
database, using the JDBC API.

Field Summary

Ipl’i vat e con
java.sql . Connection |/

81

‘private bcol ean connected

private driver
java.lang. String

‘private bcol ean loaded

‘private passwor d

java.lang. String

Iprivate
java.lang. String

primaryKeyQuery

Iprivate

query
java.lang. String
private statement
java.sql.¢tatenent |—
'pri vate
java.lang. String update
'pri vate url
java.lang. String I
Ipri vate user

java.lang. String

‘Constructor Summary

' DBConnectionBean ()

‘Method Summary

" void

DBConnectionBean ()
The default constructor of the calss that sets the
appropriate url and driver for the database

int

getPrimaryKey()
Obtains a new primary key in the table specif ed by the

current primary.

' java.sql . FzasultSet

getQuery()
Queries the DB and return the result ResultSet cbject

int

getUpdate)
Executes an update query.

T
bool ean

isClose()
Thismethod closes the connection with the dataase

r
private bolean

isConnected()

82

Establish the connection with the DB.

T
bool ean

isL oaded()
Loads the driver
" java. sl . Fasul t Set query(java.lang. String query)
Sets the query string.
~ void setDriver(java.lang. String newDriver)
Sets the driver for the database
- void setPasswor d(j ava. | ang. String newPasswor d)
Sets the DB password.
~void setPrimaryKeyQuery(j ava. l ang. String newPri mary eyQuery)
Sets the primary key for the query.
- void setQuery(java. l ang. String query)
Sets the query.
~void setUpdate(j ava. | ang. String update)
Sets the update query.
~ void setUrl(j ava. l ang. String newlrl)
Set the URL of the database.
" void

Se'[USGI‘(j ava.l ang. String newUser)
Sets the DB user name.

int

update(j ava. | ang. String updat eQuery)
Executes an update query by calling the getUpd: te method

'Methods inherited from classjava.lang.Object

IcI one, equals, finalize, getC ass, hashCode, notify, notifyAll, toString, wait,

wait, wait

'Field Detail

loaded

private boolean loaded

connected

private boolean connected

url

private javalang.String url

driver

83

private javalang.String driver

user

private javalang.String user

password

private javalang.String password

con

private java.sgl.Connection con

statement

private java.sgl.Statement statement

query

private javalang.String query

update

private javalang.String update

primaryKeyQuery

private javalang.String primaryK eyQuery
Constructor Detail

DBConnectionBean

public DBConnectionBean()

'Method Detail

DBConnectionBean

public void DBConnectionBean()

The default constructor of the calss that sets the appropriate url and driver for the
database

Returns:

void.

setUrl

public void setUrl(java.lang.String newUrl)
Set the URL of the database.

Parameters:

newri - The new URL

Returns:

void.

setDriver

public void setDriver(javalang.String newDriver)
Sets the driver for the database

Parameters.

newdriver - The new driver.

Returns:

void.

satUser

public void setUser (javalang.String newUser)
Seatsthe DB user name.

Parameters:

newUser - The new user name.

Returns:

void.

setPassword

public void setPasswor d(java.lang.String newPassword)
Sets the DB password.

Parameters:

newPasswor d - The new password.

Returns:

void.

isLoaded

public boolean isL caded()
Loads the driver

Returns:
Trueif the driver is loaded successfully

isConnected

private boolean isConnected()
Establish the connection with the DB.
Returns:

85

Trueif the connection is established.

query

public java.sgl.ResultSet query(javalang.String query)
Sets the query string.

Parameters:

query - The new query string.

Returns:

A ResultSet object containing the results of the query

getQuery

public java.sgl.ResultSet getQuery()

Queries the DB and return the result ResultSet object
Returns:

A ResultSet object containing the results of the query

setQuery

public void setQuery (java.lang.String query)
Sets the query.

Parameters:

query - The new query.

Returns:

void.

setUpdate

public void setUpdate(java.lang.String update)
Sets the update query.

Parameters:

updat e - The update query.

Returns:

void.

update

public int updatgjava.lang.String updateQuery)

Executes an update query by calling the getUpdate method
Parameters:

updat eQuery - the update query

Returns:

An integer representing the primary key or -1 if an error happens.

getUpdate
86

public int getUpdate()

Executes an update query.

Returns:

An integer representing the primary key or -1 if an error happens.

isClose

public boolean isClose()

This method closes the connection with the database
Returns:

A boolean true if the connection is closed successfully

setPrimaryK eyQuery

public void setPrimaryK eyQuery(javalang.String newPrimaryK eyQuery)
Sets the primary key for the query.

Parameters:

newPr i mar yKeyQuery - The new primary key for that query

Returns:

void.

getPrimaryKey

public int getPrimaryKey()

Obtains a new primary key in the table specified by the current primary. The result set of
the ordered set of existing primary keys is examined sequentialy, until the smalest non
used positive integer is found. This method may only be used for tables using integers as
aprimary key.

Returns:

the new primary key or -1 if an error happens.

dbsection

Class Echo24

javalang.Object

+-org.xml.sax.hel pers.DefaultHandler
I
+-dbsection.Echo24
All Implemented | nterfaces:
org.xml.sax.ContentHandler, org.xml.sax.DTDHandler, org.xml.sax.EntityResolver,
org.xml.sax.ErrorHandler

public class Echo24

extends org.xml.sax.hel pers.DefaultHandler

The class Echo24 is responsible to parse the passed file and extract al of its elements and
attributes

87

Field Summary

Iprivate java.io.File [file

private fileTags
dbsection. Fil eTags relags

'pri vate int indentL evel

private _ indentString
java.lang. String

Ipri vate int index

private boclean nonusSecElementFounf

'private out

static java.io.Witer [—

private arsedFile
java.lang. ftring[] parsecrie

private secCategory

java.lang. $tring

‘private bocl ean secElementsFound

r
private boclean

usSecElementFound

‘Constructor Summary

' Echo24()
The default constructor of the class

‘Method Summary

~ void characters(char[] buf,

int offset, int len)
‘private \oid emit(java.lang. String s)
'~ void endDocument ()
'~ void endElement(j ava. I ang. String namespaceURI,
java.lang. String sNane, java.l ang. String gName)

88

' java.io.file ge“:”e()
Gets the file contained in the object

' java.lan¢. String[] getParsedFiIe()
Gets the parsed file contained in the object

~ dbsectior . Fi | eTags mainNew(j ava. | ang. String argv)
This method parses the file in the passed URL by using one
of the SAXParsers from the SAXParserFactory

Iprivate void n_|()

' dbsectior. Fil eTags QarseFiIe(j ava.lang. String filenane)
This method parses the file by using one of the SAXParsers
fromthe SAXParserFactory

void setDocumentL ocator (org. xni . sax. Locator 1)
voi d startDocument ()
voi d startElement(j ava. | ang. String nanmespaceURI ,
java.lang. String | Nane, java.lang. String gNane,

org.xnl .sax. Attributes attrs)

'Methodsinherited from class org.xml.sax.helpers.DefaultHandler

IendPr ef i xMappi ng, error, fatal Error, i gnor abl eWhi t espace, not &t i onDecl ,
processinglnstruction, resol veEntity, ski ppedEntity, start PrefixMappi ng,
unpar sedEnti tyDecl, warning

'Methodsinherited from classjava.lang.Object

'cl one, equals, finalize, getC ass, hashCode, notify, notifyAll, toString, wait,
wait, wait

'Field Detail

out

private static java.io.Writer out

indentString

private javalang.String indentString

indentLevel

89

private int indentL evel

parsedFile

private java.lang.String[] parsedFile

file

private javaio.File file

fileTags

private dbsection.FileTags fileTags

secElementsiFound

private boolean secElementsFound

usSecElementFound

private boolean usSecElementFound

nonusSecEl ementFounf

private boolean nonusSecElementFounf

secCategory

private java.lang.String secCategory

index

private int index

' Constructor Detail

Echo24

public Echo24()
The default constructor of the class

'Method Detail

parseFile

public dbsection.FileTags par seFile(javalang.String filename)

This method parses the file by using one of the SAXParsers from the SAX ParserFactory
Parameters:

filename - The name of the file to be parsed

90

Returns:

A FileT ags object containing all the security tags of the passed file
Throws,

java.lang. Throwabl e - In case of an error during the process

mainNew

public dbsection.FileTags mainNew(java.lang.String argv)

This method parses the file in the passed URL by using one of the SAXParsers from the
SAXParserFactory

Returns:

A FileTags object containing all the security tags of the passed file

Throws.

java.lang. Throwabl e - In case of an error during the process

getFile

public javaio.File getFile()

Gets the file contained in the object
Returns:

The file contained in the object

getParsedFile

public javalang.String[] getPar sedFile()

Gets the parsed file contained in the object

Returns:

The file parsed contained in the object in an array of String

setDocumentLocator

public void setDocumentL ocator (org.xml.sax.Locator [)
Specified by:

set Docunent Locat or ininterface org. xm . sax. Cont ent Handl er
Overrides:

set Docunent Locat or in class org. xm . sax. hel pers. Def aul t Handl er

startDocument

public void startDocument()

throws org.xml.sax.SAX Exception
Specified by:
start Docurent ininterface org. xm . sax. Cont ent Handl er
Overrides:

startDocument iN Class org. xm . sax. hel pers. Def aul t Handl er
org. xml . sax. SAXExcepti on

91

endDocument

public void endDocument()

throws org.xml.sax.SA X Exception
Specified by:
endDocunent in interface or g. xm . sax. Cont ent Handl er
Overrides:

endDocunent iN class org. xm . sax. hel pers. Def aul t Handl er
org. xm . sax. SAXExcepti on

startElement

public void startElement (javalang.String namespaceURI,
javalang.String IName,
javalang.String gName,
org.xml.sax.Attributes attrs)
throws org.xml.sax.SA X Exception
Specified by:
start El ement in interface org. xm . sax. Cont ent Handl er
Overrides:

start El ement in class or g. xm . sax. hel pers. Def aul t Handl er
org. xm . sax. SAXExcepti on

endElement

public void endElement (java.lang.String namespaceURI,
javalang.String sName,
javalang.String gName)
throws org.xml.sax.SA X Exception
Specified by:
endEl erent in interface org. xm . sax. Cont ent Handl er
Overrides:

endEl erent in class org. xm . sax. hel pers. Def aul t Handl er
org. xm . sax. SAXExcepti on

characters

public void char acter s(char[] buf,
int offset,
int len)
throws org.xml.sax.SA X Exception
Specified by:
characters ininterface org. xm . sax. Cont ent Handl er
Overrides:

characters in class org. xm . sax. hel pers. Def aul t Handl er
org. xm . sax. SAXExcepti on

92

emit

private void emit(javalang.String <)
throws org.xml.sax.SA X Exception
org. xm . sax. SAXExcepti on

nl

private void nl()

throws org.xml.sax.SA X Exception
org. xml . sax. SAXExcepti on

dbsection
Class FileTags

javalang.Object

I
+dbsection.FileTags

public class FileTags

extends java.lang.Object

The class FileTags is responsible to create an object containing al the security elements
and attributes of the specific file that belongs

Field Summary
'(package private) [file
java.io.file —

'(package private) (filename
java.lan¢. String —

(package private) |gacAttribute
java.lanc. String[] |—

‘(package private) |sacAttributeValue

java.lan¢. String[]

93

I(package private)
java.lan¢. String[]

secElement

(package private)
java.lan¢. String[]

secElementValue

‘Constructor Summary

'FiIeTagsu ava.io.File newFile)
The default constructor of the class receives the passed File object and initializes
the parameter for itself

‘Method Summary

" void

checkAttribute(j ava. | ang. String category,
java.lang. String newEl enent, java.lang.String newAttribute,
java.lang. String newAttri buteVal ue)

Checks the passed ttribute if it is a security attribute

T
bool ean

checkEIement(j ava.lang. String category,
java.lang. String newEl enent,
java.lang. String newkl ement Val ue)

Checks the passed element if it is a security element

' java.lan¢. String[]

getSecAttributes()
Getsfile's security attributes contained in the object

' java.lan¢. String[]

getSecAttributeValues()
Gets file's security attributes values contained in th e object

'private void

setFileName(j ava. | ang. String newFi | eNare)
Sets the name of the file

‘Methods inherited from classjava.lang.Object

IcI one, equals, finalize, getdass, hashCode, notify, notifyAll, toString, wait,

wait, wait

'Field Detail

filename

javalang.String filename

secElement

javalang.String[] secElement

secElementVaue

javalang.String[] secElementValue

94

secAttribute

javalang.String[] secAttribute

secAttributeVaue

javalang.String[] secAttributeValue

file

javaio.Flefile

' Constructor Detail

FileTags

public FileT ags(java.io.File newFile)

The default constructor of the class receives the passed File object and initializes the
parameter for itself

Parameters:

newri | e - The File object on which that FileTags object is referred to

‘Method Detail

setFileName

private void setFileName(javalang.String newFileName)
Sets the name of thefile

Parameters:

newFi | eNarre - The new filename

Returns:

void

getSecAttributes

public javalang.String[] getSecAttributey()

Gets file's security attributes contained in the object
Returns:

Thefile's security attributes contained in the object

getSecAttributeValues

public javalang.String[] getSecAttributeValues()

Gets file's security attributes values contained in the object
Returns:

Thefile's security attributes values contained in the object

checkElement

95

public boolean checkElement (java.lang.String category,
javalang.String newElement,
javalang.String newElementValue)

Checks the passed element if it is a security element

Parameters:

category - The element's category

newel erent - The element to be checked

newEl enent Val ue - The eement's value

Returns:

A boolean true if the element is a security element

checkAttribute

public void checkAttribute(java.lang.String category,
javalang.String newElement,
javalang.String newAttribute,
javalang.String newAttributeValue)

Checks the passed attribute if it is a security attribute

Parameters:

category - The attribute's category

newkl enent - The element containing the attribute

newAt t ri bute - The attribute to be checked

newAt t ri but eval ue - The attribute's value

Returns:

void

96

dbsection
Class FindUrl

javalang.Object
I

+javax.servlet.GenericServiet

I
+-javax.serviet.http.HttpServl et

|
+-dbsection.FindUrl
All Implemented | nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.serviet.ServletConfig

public class FindUr|

extends javax.servlet.http.HttpServlet

implements java.io.Seridizable

The FindUrl class defines a servlet that is responsible to connect the system with the
requested server, to retrieve the realesable files from that server and to decide which of
those files the user is allowed to access

See Also:

Serialized Form

‘Field Summary

‘private java.lang.String authentication
‘private bool ean decision

97

Iprivate java.io.File

file
Ipri vate static dbsection.Filelags fiIengs
'private java.lang. String local Ser ver
'pri vate
static dbsection. SecMet adat aMe nager manager
'pri vate java.util.Vector matchedFiles
Ipri vate java.lang.String anServer
'private java.io.PrintWiter out
'private java.lang. String Qermission
'pri vate r
javax.servlet.http. HtpServl et Request req
Ipri vate java.lang.String R@Filename
Ipri vate res
javax.servlet.http. H tpServl et Response |~
'private java.lang. String salectedUr |
'private java.lang. String salUrl
'pri vate java.lang.String server

Iprivate java.util.Vector

server FoundFiles

Iprivate java.lang. String

thisSer ver

'private java.lang. String

thisSer ver Password

'pri vate dbsection. User Bean

user

'Fields inherited from classjavax.servlet.http.HttpServiet

98

'Fiddsinherited from classjavax.serviet.GenericServiet

‘Constructor Summary

'FindUrI()

‘Method Summary

'private
java.util. Vector

checkIfEXxist(java.lang. String fileNane)

'private void

checkingFiIe(j ava.lang. String filenane)

voi d doGet(j avax. servlet. http. Ht t pServl et Request request,
javax.servlet.http. H t pServl et Response response)
Processing user's GET request by simply passing the control
to the doPost.
voi d doPost(j avax. servl et. http. Ht t pSer vl et Request req,
javax.servlet.http. H t pServl et Response res)
Processing user's POST request.
'private void exitLinkS()

'private
java.lan¢. String[]

findVersion(j ava. 1 ang. String ful | Name)

Iprivate void

getConnected(j ava. I ang. String server)

Iprivate \void

printData()

'private \void

startSession()
Starts a new sesson after a customer is correctly
authenticated.

'Methods inherited from classjavax.servlet.http.HttpServlet

"doDel et e, doOptions, doPut, doTrace, getlLastMdified, service, service

'Methodsinherited from classjavax.servlet.GenericServiet

"dest roy, get | ni t Paraneter, get | ni t Par anet er Nanes, get Ser vl et Confi g,

get Ser vl et Cont ext ,

getServletInfo, getServlietNane, init, init, log, |oc

99

'Methods inherited from classjava.lang.Object

'cl one, equals, finalize, getC ass, hashCode, notify, notifyAll,

wait, wait

toString, wait,

'Field Detail

user

private dbsection.UserBean user

out

private java.io.PrintWriter out

req

private javax.servlet.http.HttpServlietRequest req

res

private javax.servlet.http.HttpServletResponse res

salUrl

private java.lang.String selUr|

selectedUrl

private javalang.String selectedUr|

permission

private javalang.String per mission

authentication

private javalang.String authentication

fileTags

private static dbsection.FileTags fileT ags

manager
private static dbsection.SecM etadataManager manager

100

decision

private boolean decision

file

private javaio.File file

thisServer

private javalang.String thisSer ver

thisServerPassword

private javalang.String thisSer ver Passwor d

serverFoundFiles

private java.util.Vector server FoundFiles

matchedFiles

private java.util.Vector matchedFiles

npsServer

private java.lang.String npsSer ver

|oca Server

private java.lang.String local Ser ver

server

private java.lang.String ser ver

RegFilename

private javalang.String RegFilename

Constructor Detail

FindUrl

public FindUrl()

Method Detail

101

doGet

public void doGet (javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServietException,
java.io.lOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet in C|aSSj avax.servlet.http. HtpServl et
Parameters:
request - Theclient's request.
response - The response to the client.
Returns:
void.
Throws,
j avax. servl et. Servl et Except i on - In case of a servlet error encountered
java.io. 1 OException - In case of al/O error encountered

doPost

public void doPost(javax.servlet.http.HitpServietRequest reg,
javax.servlet.http.HttpServletResponse res)

throws javaio.lOException

Processing user's POST request.

Overrides:

doPost in C|868j avax.servlet.http. Ht pServl et

Parameters.

req - the client request.

res - the response to client.

Returns:

void.

Throws:

j avax. servl et. Servl et Except i on - In case of aservlet error encountered

java.io. 1 OException - In case of al/O error encountered

getConnected

private void getConnected(java.lang.String server)

startSession

private void startSession()
throws java.lang.Exception
Starts a new session after a customer is correctly authenticated.
Returns:
void.

102

Throws:
Exception.
java. | ang. Excepti on

checklIfExist

private java.util.Vector checklfExist(javalang.String fileName)

findVersion

private java.lang.String[] findVersion (javalang.String fullName)

checkingFile

private void checkingFile(java.lang.String filename)

exitLinks

private void exitLinky)

printData

private void printData()

103

dbsection
ClassImportFile

javalang.Object

+-javax.serviet.GenericServiet
I
+-javax.serviet.http.HttpServl et
|
+-dbsection.ImportFile
All Implemented | nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.serviet.ServletConfig

public class ImportFile

extends javax.servlet.http.HttpServlet

The ImportFile class defines a servlet that is responsible to create aweb page to help user
input the file and the server where that file is located in order to open it.

See Also:

Seridlized Form

Field Summary
'pri vate java.util.Vector avaFiles
'pri vate dbsection. User Bean freshuser
Iprivate java.io.PrintWiter out
Ipri vate

javax.servlet. http. HtpServl et Request req

104

private
j avax. servl et

.http. H t pServl et Response -

Fieldsi

nherited from class javax.servlet.http.HttpServiet

Fieldsi

nherited from class javax.servlet.GenericServiet

Constructor Summary

ImportFile()

Method Summary

voi d

dOPOS(j avax.servlet.http. H t pServl et Request req,
javax.servlet.http. H t pServl et Response res)

Processing user's POST request.

privat
e viaid

exitLinks()
Displays the available links to direct control in another servlet, in
case the user wants to cancel this procedure

privat
e vnid

inputUrl()
Creates the necessary radio buttons for the server's sel=ction, the

text field to get the file and the buttons to clear the field or to submit the
filename

privat
e vnid

printData()
Prints the user's persona and Security data retrievec from the

database that contained in the UserBean object

Methods inherited from class javax.servlet.http.HttpServiet

doDel et
service

e, doCGet, doOptions, doPut, doTrace, getLastModified, service,

Methods inherited from class javax.serviet.GenericServiet

destroy
get Ser vl et Cont

, get | ni t Paraneter, get | ni t Par anet er Nanes, get Servl et Confi g,
ext, getServletlnfo, getServletNane, init, init, log, |oc

Methods inherited from class java.lang.Object

cl one,

equal s, finalize, getC ass, hashCode, notify, notifyAll, toString,

105

IV\ﬂit, wait, wait

Field Detail

freshuser

private dbsection.UserBean freshuser

avaFiles

private java.util.Vector avaFiles

out

private javaio.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

Constructor Detail

ImportFile

public ImportFile()

Method Detail

doPost

public void doPost(javax.servlet.http.HttpServietRequest reqg,
javax.servlet.http.HttpServietResponse res)

throws java.io.l OException

Processing user's POST request.

Overrides:

doPost iN Class j avax. servlet. http. HttpServl et

Parameters:

req - the client request.

res - the responseto client.

Returns:

void.

Throws:

javax. servl et. Servl et Except i on - In case of aservlet error encountered

java.io.l OException - In case of al/O error encountered

exitLinks
106

private void exitLink¥()

Displays the available links to direct control in another serviet, in case the user
wants to cance this procedure

Returns:

void.

inputUrl

private void inputUrl()

Creates the necessary radio buttons for the server's selection, the text field to get
the file and the buttons to clear the field or to submit the filename

Returns:

void.

printData

private void printData()

Prints the user's personal and Security data retrieved from the database that
contained in the UserBean object

Returns:

void.

107

dbsection
ClassImportToSave

java.lang.Object

+javax.servlet.GenericServiet

I
+-javax.servlet.http.HttpServlet

|
+-dbsection.ImportToSave
All Implemented | nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.serviet.ServletConfig

public class ImportToSave

extends javax.servlet.http.HttpServlet

implements java.io.Seridlizable

The ImportToSave class defines a servlet that is responsible to create aweb page
to help user input the file to be saved, as well as some information related to the file

See Also:

Seriglized Form

Field Summary

private java.util.Vector avaFiles
private java.lang.Strig[] classifi
private java.lang.Strig[] countries

108

private java.io.PrintV iter out
' private r
javax.servlet. http. HtpServl et Request r'eq
' private res
javax.servlet.http. HtpServl et Respons —
e
' private dbsection. User 3ean sessionuser

Fieldsinherited from class javax.servlet.http.HttpServlet

Fieldsinherited from class javax.serviet.GenericServlet

Constructor Summary

ImportToSave()

Method Summary

so0i d

dOGet(j avax.servlet.http. H t pServl et Request r 2quest,
javax.servlet.http. HtpServl et Response response)

Processing user's GET request by simply passing the: control to
the doPost.

so0i d

dOPOSt(j avax. servlet.http. HtpServl et Request 1eq,
javax.servlet.http. H t pServl et Response res)

Processing user's POST request.

g

java.leng. Strin

L-ivate

dI‘OQDOWI’lC|a$(j ava.lang. String userCl ass)
This method creates the alowed options in the droj) down list

for the classification sdlection of the file

g

java.leng. Strin

[-ivate

dropDownCountry(j ava.l ang. String userCountry)
This method creates the alowed options in the drop) down list
for the releasable countries of thefile

voi d

f-ivate

exitLinks()
Displays the available links to direct control in another serviet,
in case the user wants to cancel this procedure

voi d

f-ivate

inputFile()
Creates the necessary text field to help the user to inut the file
and the buttons to clear the field or to submit the filename

109

Frivate printStandardM etadatay)

void Prints the user's personal and security data that will appended
to the file as its metadata.
I voi d Fivate tableRow(j ava. I ang. String firstCol um,

java.lang. String secondCol umm, java.lang. String thirdCol um,
java.lang. String forthCol um)

This method displaysthe passed parametersin atabl 2row with
specific dimensions

M ethods inherited from class javax.serviet.http.HttpServlet

doDel ete, doOptions, doPut, doTrace, getlLastModified, service, service

Methods inherited from class javax.serviet.GenericSer vlet

destroy, get I ni t Paraneter, get I ni t Par amet er Nanes, get Servl et Confi g,
get Servl et Context, getServletlnfo, getServletNane, init, init, log, |o¢

Methods inherited from class java.lang.Object

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail

sessionuser

private dbsection.UserBean sessionuser

avaFiles

private java.util.Vector avaFiles

out

private javaio.PrintWriter out

req

private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServletResponse res

classifi

private javalang.String[] classifi
110

countries

private java.lang.String[] countries

Constructor Detail

ImportToSave

public ImportToSave()

Method Detail

doGet

public void doGet (javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServietException,
java.io.lOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet iN Classjavax. serviet. http. HttpServl et
Parameters:
request - Theclient's request.
response - The responseto the client.
Returns:
void.
Throws:
javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io.l CException - In case of al/O error encountered

doPost

public void doPost(javax.servlet.http.HttpServietRequest req,

javax.servlet.http.HttpServletResponse res)
throws javax.servlet.ServletException,

java.io.lOException

Processing user's POST request.

Overrides:

doPost in C|8$j avax.servlet.http. HtpServl et

Parameters:

req - the client request.

res - the responseto client.

Returns:

void.

Throws.

j avax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. 1 OException - Incase of al/O error encountered

111

exitLinks

private void exitLink¥()

Displays the available links to direct control in another servlet, in case the user
wants to cance this procedure

Returns:

void.

inputFile

private void inputFile()

Creates the necessary text field to help the user to input the file and the buttons to
clear the field or to submit the filename

Returns:

void.

printStandardM etadata

private void printStandar dM etadata()

Prints the user's personal and security data that will appended to the file as its
metadata.

Returns:
void.

dropDownClass

private java.lang.String dropDownClass(java.lang.String userClass)

This method creates the alowed options in the drop down list for the
classification selection of the file

Parameters:

user d ass - Theclassification of the user, which will be the maximum allowed for
thefile

Returns:

The allowed classifications for the file

dropDownCountry

private java.lang.String dropDownCountry(java.lang.String userCountry)

This method creates the alowed options in the drop down list for the releasable
countries of thefile

Returns:

The alowed countries for the file

tableRow
private void tableRow(java.lang.String firsColumn,

112

javalang.String secondColumn,
javalang.String thirdColumn,
javalang.String forthColumn)
This method displays the passed parameters in a table row with specific
dimensions
Parameters:
firstcol um - The first column of the row
secondCol um - The second column of therow
t hi rdcol umm - The third column of the row
Returns:
void

dbsection
Class Login

javalang.Object

I
+javax.servlet.GenericServiet

|
+-javax.servlet.http.HttpServiet
|
+-dbsection.Login
All Implemented Interfaces:
javaio.Serializable, javax.serviet.Servlet, javax.servlet.ServletConfig

public class Login

extends javax.servlet.http.HttpServlet

The class Login defines a servlet that is responsible to authenticate users trying to
login. Upon positive aithentication, a new user session is created with two attached
beans: the customer bean and the database connection module.

See Also:

Seridlized Form

Fiddd Summary

private java.util.Vector avaFiles

private java.sql.Conne:tion connection

private int CONNECTION ERROF!
private java.lang.Strig cur ServiceClass

private java.lang.Strig cur ServiceName

113

private java.lang.Strig

cur ServicePos

private java.lang.Strig

curUser Countryld

private int curUserld

private dbBean
dbsecti on. DBConnect i onBean -

private java.lang.Exce)tion dbe

private int

DRIVER ERROR

private int

INVALID USER

private java.io.PrintV'iter

out

private int

QUERY ERROR

private int

QUERY ERROR EXC

j avax.greir\ilalltei .http. HtpServl et Request %

j avax.greir\ilalltei .http. H t pServl et Respons r onse
private java.sql.Resul Set rs
private java.sql.Resul Set QZ
private dbsection. User 3ean user

Fieldsinherited from class javax.servlet.http.HttpServlet

Fieldsinherited from class javax.serviet.GenericServlet

114

Constructor Summary

Login()

Method Summary

i tP” ’?jse 5 createUser()
sectior. User Bea P . . .
n Creates a new userBean object from the information
retrieved from the database.
ve d dOGet(j avax.servlet.http. Ht pServl et Request request,
javax.servlet.http. Ht pServl et Response response)
Processing user's GET request.
ve d doPost(j avax. servl et. http. H t pSer vl et Request request
javax.servlet.http. H t pServl et Response response)
Processing user's POST request by simply pissing the
control to the doGet.
» pri/ate exitPoint (i nt exit Condition)
voi T . - .
Defines severa types of exit conditions dependi ig on the
specified error
~ private findFiles(j ava.lang. String servi ce,
void java.lang. String position, java.lang. String clearance,

java.lang. String country)
Finds the files that are available to a specific user according
to his/her security authorizations

voi d

pri/ate findNamePos(j ava. | ang. Stri ng nane,
java.lang. String password)

Finds the Security authorizations of a valid user

ve d init(j avax. servl et. Servl et Config config)

One-time initilization of the servlet.

voi d

priate startSession()
Starts a new session after a user is succefully authe nticated.

voi d

pri sate validateUser(j ava. | ang. String nane,
java.lang. String password)

Authenticates a user with the given username & pe sword

Methods inherited from class javax.servlet.http.HttpServiet

doDel ete, doOptions, doPut, doTrace, getlLastMdified, service, soervice

Methods inherited from class javax.servlet.GenericServiet

destroy, get I ni t Paraneter, get | ni t Par amet er Nanes, get Servl et Confi g,

get Servl et Cont ext, getServletlnfo, getServletNane, init, log, |og

115

M ethods inherited from class java.lang.Obj ect

clone, equals, finalize, getC ass, hashCode, notify, notifyAll,

wait, wait

toString,

Field Detail

DRIVER _ERROR

private fina int DRIVER_ERROR
See Also:
Congtant Field Vaues

CONNECTION_ERROR

private fina int CONNECTION_ERROR
See Also:
Congtant Field Values

QUERY_ERROR

private fina int QUERY_ERROR
See Also:
Congtant Field Values

QUERY_ERROR_EXC

private fina int QUERY_ERROR_EXC
See Also:
Constant Fidd Vaues

INVALID_USER

private fina int INVALID_USER
See Also:
Congtant Field Vaues

request

private javax.servlet.http.HttpServietRequest request

response

private javax.servlet.http.HttpServletResponse response

connection

116

private java.sgl.Connection connection

out

private java.io.PrintWriter out

rs

private java.sgl.ResultSet rs

rs2

private java.sgl.ResultSet rs2

dbBean

private dbsection.DBConnectionBean dbBean

curServiceName

private javalang.String cur ServiceName

curServicePos

private java.lang.String cur ServicePos

curServiceClass

private java.lang.String cur ServiceClass

curUserCountryld

private java.lang.String cur User Countryld

curUserld

private int curUserld

dbe

private java.lang.Exception dbe

user
private dbsection.UserBean user

117

avaFiles

private java.util.Vector avaFiles

Constructor Detail

Login

public Login()

Method Detail

init

public void init(javax.servlet.ServlietConfig config)
throws javax.servlet.ServletException

One-time initilization of the servlet. If the Connection Module is not yet initiated,
it ensures its creation.

Specified by:

init ininterface j avax. servl et. Servl et

Overrides:

initin C|aSSj avax. servl et. Generi cServl et

Parameters:

config - loca server configuration parameters.

Returns:

void.

Throws:

javax. servl et. Servl et Except i on - In case of aservlet error encountered

doPost

public void doPost(javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException,
java.io.lOException
Processing user's POST request by ssimply passing the control to the doGet.
Overrides:
doPost in ClaSSj avax.servlet.http. HtpServl et
Parameters:
request - Theclient's request.
response - The response to the client.
Returns:
void.
Throws:
j avax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O aror encountered

doGet
118

public void doGet (javax.servlet.http.HttpServietRequest request,

javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServietException,

java.io.lOException

Processing user's GET request.

Overrides:

doGet iN C|a$j avax.servlet.http. HtpServl et

Parameters:

request - the client request.

response - the response to client.

Returns:

void.

Throws,

javax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io.l OException - In case of al/O error encountered

validateUser

private void validateUser(java.lang.String name,
javalang.String password)

Authenticates a user with the given username & password

Parameters:

nane - The user'susername.

password - The user's password.

Returns:

void.

Throws:

j avax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. | OException - In case of aservlet error encountered

findNamePos

private void findNamePos (java.lang.String name,
javalang.String password)

Finds the Security authorizations of a valid user

Parameters:

name - Theuser'susername.

password - The user's password.

Returns:

void.

Throws,

j avax. servl et. Servl et Except i on - In case of a servlet error encountered

java.io. | OException - In case of aservlet error encountered

findFiles
119

private void findFiles(java.lang.String service,
javalang.String position,
javalang.String clearance,
javalang.String country)
Finds the files that are available to a specific user according to his’/her security
authorizations
Parameters:
service - The user's service
posi tion - The user's position in his or her service
cl earance - The user's clearance (Unclassified, Classified etc.)
country - The user's country
Returns:
void.
Throws:
javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of an /O error encountered

startSession

private void startSession()
throws java.lang.Exception
Starts a new session after a user is succefully authenticated.
Returns:
void
Throws:
java. | ang. Exception - In case of an invalid Situation is encountered

createUser

private dbsection.UserBean createUser ()
throws java.lang.Exception
Creates a new userBean object from the information retrieved from the database.
Returns:
A UserBean object containg al the user's datais returned.
Throws.
java. | ang. Exception - In the case of an invalid data

exitPoint

private void exitPoint (int exitCondition)

Defines severa types of exit conditions depending on the specified error
Parameters:

exi t Condi ti on - That integer specifies the error causes the exit.
Returns:

void.

120

dbsection
Class L ogout

javalang.Object
I
+javax.servlet.GenericServiet
|
+-javax.servlet.http.HttpServiet

|
+-dbsection.L ogout

All Implemented I nterfaces:
javaio.Serializable, javax.servlet.Servlet, javax.servlet.ServlietConfig

public class L ogout
extends javax.servlet.http.HttpServlet
This class defines a servlet that logout a user and end his/her session.

See Also:

Seridized Form

Field Summary

private dbsection. Cust dmer Bean customer
private dbBean

dbsecti on. DBConnect i onBean

private int ERROR SESSION
private java.io.PrintV iter out

private java.lang.Strig o_utM

private request

javax.servlet.http. H tpServl et Request

121

private
javax.servlet.http. HtpServl et Respons
e

private java.sql.Resul Set rs

Fieldsinherited from class javax.servlet.http.HttpServiet

Fieldsinherited from class javax.serviet.GenericServlet

Constructor Summary
L ogout()

Method Summary

void dOGet(j avax. servlet. http. H t pServl et Request request,

javax.servlet.http. HtpServl et Response response)

Processing user's GET request.

void dOPOS(j avax. servlet. http. H t pServl et Request request,

javax.servlet.http. HtpServl et Response response)
Processing user's POST request by simply passing the control to
the doGet.

privat exitLinks()
Displays the available links to direct control in another page, in
case the user wants to discontinue the session

e viid

privat processRequest ()
Processing the request for logging the user out and terminating the
current user session.

e viaid

M ethods inherited from class javax.serviet.http.HttpSer vlet

doDel ete, doOptions, doPut, doTrace, getlLastModified, service, scervice

Methods inherited from class javax.serviet.GenericSer vlet

destroy, get I ni t Paraneter, get | ni t Par armet er Nanes, get Servl et Confi g,
get Servl et Context, getServletlnfo, getServletNane, init, init, log, |o¢

Methods inherited from class java.lang.Object

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,

122

IV\ait, wait, wait

Field Detail

ERROR_SESSION

private final int ERROR_SESSION
See Also:
Congtant Field Vaues

request

private javax.servlet.http.HttpServietRequest request

response

private javax.servlet.http.HttpServletResponse response

out

private javaio.PrintWriter out

rs

private java.sgl.ResultSet rs

dbBean

private dbsection.DBConnectionBean dbBean

customer

private dbsection.CustomerBean customer

output

private java.lang.String output

Constructor Detail

Logout

public Logout ()

Method Detail

doPost

public void doPost(javax.servlet.http.HttpServietRequest request,
javax.servlet.http.HttpServletResponse response)
123

throws javax.servlet.ServletException,
javaio.lOException

Processing user's POST request by ssimply passing the control to the doGet.
Overrides:
doPost in C|a$j avax.servl et. http. HtpServl et
Parameters:
request - Theclient's request.
response - The response to the client.
Returns:
void.
Throws,
javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. | OException - In case of al/O error encounter ed

doGet

public void doGet (javax.servlet.http.HttpServletRequest request,

javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException,

java.io.lOException

Processing user's GET request.

Overrides:

doGet in cIass; avax. servlet. http. HtpServl et

Parameters:

request - the client request.

response - the response to client.

Returns:

void.

Throws:

j avax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. | OException - In case of al/O error encountered

processRequest

private void processRequest ()

Processing the request for logging the user out and terminating the current user
session.

Returns:

void

exitLinks

private void exitLinks()

Displays the available links to direct control in another page, in case the user
wants to discontinue the session

Returns:

124

void.

dbsection
Class MetaTags

javalang.Object

I
+-dbsection.MetaT ags

public class MetaTags
extends java.lang.Object
The MetaTags class codes the tags of afile as an object

Field Summary
' (pe :kage index
private) int
' (pe :kage .
private) par sedFile

java.lan¢. String[

]

Constructor Summary

MetaT ags()
The default constructor of the class initializes the variables.

Method Summary

void @(j ava.lang. String newString)
Adds a new tag passed as the parameter
' java.lan¢. String[getParsedFiIe()
] Gets the tags of the parsed file

Methods inherited from class java.lang.Object

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait, wait

125

Field Detail

parsedFile

javalang.String[] parsedFile

index

int index

Constructor Detail

MetaTags

public MetaTags()
The default constructor of the class initializes the variables.

Method Detail

getParsedFile

public javalang.String[] getPar sedFile()

Gets the tags of the parsed file

Returns:

An array of String representing the tags of the file

add

public void add(java.lang.String newString)
Adds a new tag passed as the parameter
Parameters:

newst ri ng - The new tag to be added
Returns:

void

126

dbsection
ClassOpenFile

javalang.Object
I
+javax.servlet.GenericServiet
|
+-javax.servlet.http.HttpServiet
|
+-dbsection.OpenFile
All Implemented I nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.servlet.ServletConfig

public class OpenFile

extends javax.servlet.http.HttpServlet

The class OpenFile defines a servlet that is responsible to open any file a user
may select either the fileis saved locally or in another server

See Also:

Serialized Form

Field Summary

private java.lang.Strig M
private java.util.Vector avaCLFiles
private java.util.Vector avaFiles
private java.util.Vector avaSEFiles
private java.util.Vector avaT SFiles
private java.util.Vectr avaUNFiles

127

private java.lang.Strig classif

private java.lang.Strig[] classification
' private java.lang.Strig[] date
I private dbBean
dbsecti on. DBConnect i onBean EEE——
' private dbsection. User 3ean newuser
' private java.lang.Strig other Server
' private java.io.PrintV iter out
' private
javax.servlet.http. HtpServl et Request req
' private res
javax.servlet.http. HtpServl et Respons —
e
' private java.lang.Strig <File

Fieldsinherited from class javax.servlet.http.HttpServlet

Fieldsinherited from class javax.serviet.GenericServlet

Constructor Summary
OpenFile()

M ethod Summary

ve d doGet(j avax. servl et. http. H t pSer vl et Request request,
javax.servlet.http. Ht pServl et Response response)
Processing user's GET request by simply passing the control
to the doPost.
ve d doPost(j avax. servl et. http. H t pSer vl et Request req,
javax.servlet.http. HttpServl et Response res)

128

Processing user's POST request.

java.util. Vector

pri/ate findFiles(j ava.lang. String service,
java.lang. String position, java.lang. String cl earance,
java.lang. String country)

Finds the files that are available to a specific user according
to his security authorizations

java.lan¢. String[

]

prisate findVersion(j ava. 1 ang. String ful | Nare)

This method analyses the filename to extract the dite and the
time, the file saved in the system which actualy represents the
version of thefile.

pri/ate int getClassl evel(j ava. I ang. String classification)
Converts user's classification to a number
I y pri sate openConnection()
vel Opens a connection with the database to retrieve the files
that are available to the user
' » pri/ate printAvaFiles()
vol This method gets the available files through the: findFiles
method and display them to the user according 0 higher
classification
' voi d priate printData()
Prints the user's personal and Security data retrieved from
the database that contained in the UserBean object
' y pri/ate printServer AvaFiles()
vel This method gets the available files passed from the
associated server and present them to the user according to hisher
classification
I voi d pri sate startEditor (j ava. I ang. String classLevel ,

java.lang. String sFile)
Cdls the applet that will in turn load and initiate 1he applet-
based XML editor

Methods inherited from class javax.servlet.http.HttpServiet

doDel ete, doOptions, doPut, doTrace, getlLastMdified, service, scrvice

Methods inherited from class javax.servliet.GenericServiet

destroy, get I nit Paraneter, get | ni t Par amet er Nanes, get Ser vl et Confi g,

get Servl et Cont ext, getServletlnfo, getServletNane, init, init, log, |og

Methods inherited from class java.lang.Object

wai t,

clone, equals, finalize, getCl ass, hashCode, notify, notifyAll, toString,

wait, wait

129

Field Detail

newuser

private dbsection.UserBean newuser

avaUNFiles

private java.util.Vector avaUNFiles

avaCLFiles

private java.util.Vector avaCL Files

avaSEFiles

private java.util.Vector avaSEFiles

aval SFiles

private java.util.Vector avaT SFiles

out

private javaio.PrintWriter out

dbBean

private dbsection.DBConnectionBean dbBean

classification

private java.lang.String[] classification

date

private javalang.String[] date

req
private javax.servlet.http.HttpServletRequest req

res

private javax.servlet.http.HttpServietResponse res

File
130

private java.lang.String selFile

classif

private java.lang.String classif

action

private java.lang.String action

otherServer

private javalang.String other Server

avaFiles

private java.util.Vector avaFiles

Constructor Detail

OpenFile

public OpenFile()

Method Detail

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletR esponse response)
throws javax.servlet.ServletException,
java.io.lOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet iN ClaSSj avax.servlet.http. HtpServl et
Parameters:
request - Theclient's request.
response - The response to the client.
Returns:
void.
Throws:
j avax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

doPost

public void doPost(javax.servlet.http.HitpServietRequest reg,
javax.servlet.http.HitpServletResponse res)

131

throws java.io.l OException
Processing user's POST request.
Overrides:
doPost in C|a$j avax.servlet.http. Ht pServl et
Returns;
void.
Throws,
j avax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

startEditor

private void startEditor (java.lang.String classLevel,
javalang.String sFile)

Calls the applet that will in turn load and initiate the applet-based XML editor

Parameters:

classLevel - The classification levd of the user that will help find the directory
where thefile is saved.

sFi I e - The name of the file that the editor will open

Returns:

void.

getClassLevel

private int getClassL evel(java.lang.String classification)
Converts user's classification to a number

Parameters:
classification - The classification level of the user
Returns:

An integer number representing the user's classification

printServerAvaFiles

private void printServer AvaFiles()

This method gets the available files passed from the associated server and present
them to the user according to his/her classification

Returns:

void

printAvaFiles

private void printAvaFiley)

This method gets the available files through the findFiles method and display
them to the user according to his/her classification

Returns:

void

132

findVersion

private java.lang.String[] findVersion (java.lang.String fullName)

This method analyses the filename to extract the date and the time, the file saved
in the system which actually represents the version of thefile.

Parameters:

ful | Nane - The complete name of thefile

Returns:

An array of string containing the date and the time

findFiles

private java.util.Vector findFilegjavalang.String service,
javalang.String position,
javalang.String clearance,
javalang.String country)

Finds the files that are available to a specific user according to his security

authorizations

Parameters:

servi ce - The user's service

posi tion - The user's position in his or her service

cl earance - The user's clearance (Unclassified, Classified etc.)

country - Theuser's country

Returns:

void.

Throws:

j ava. | ang. Exception - In case of aerror encountered

openConnection

private void openConnection()

Opens a connection with the database to retrieve the files that are available to the
user

Returns:

void

printData

private void printData()

Prints the user's personal and Security data retrieved from the database that
contained in the UserBean object

Returns:

void.

133

dbsection
Class SaveFile

javalang.Object
I

+javax.servlet.GenericServiet
|
+-javax.servlet.http.HttpServiet

|
+-dbsection.SaveFile

All Implemented I nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.serviet.ServletConfig

public class SaveFile

extends javax.servlet.http.HttpServiet

implements java.io.Serializable

The SaveFile class is responsible to upload the file from the user's machine to a
temporary area of the system and to check and parse thefile

See Also:

Serialized Form

Fidd Summary

private bool ean decision
private java.lang.Strig desiredClass
private java.lang.Stri g desiredCountry
private java.lang.Strig ending

private java.lang.Strig errorState
private java.io.File file

private java.lang.Strig filename

134

private java.lang.Strig[] fileSecAttr
' (package private) i
static dbsection. Fil eTags fileTags
' private java.lang.Strig fiuo
' private java.lang.Strig fouo
' (package private) manager

static

dbsecti on. SecMet adat aMe nager

private int

MAXIMUM FILE LINES

private java.io.PrintV iter out

' private r
javax.servlet.http. HtpServl et Request r'eq

' private res
javax.servlet. http. HtpServl et Respons —

e

' private java.io.File selectedFile

' private java.lang.Strig temQFiIe

' private java.lang.Strig uploaded

' private dbsection. User 3ean user

Fieldsinherited from class javax.servlet.http.HttpServilet

Fieldsinherited from classjavax.servlet.GenericServlet

Constructor Summary

SaveFile()

135

Method Summary

voi d

f-ivate

askConfirm(j ava. I ang. String status)
In the cases where the status found is "upjrade" or
"downgrade" this method displays the appropriate message

voi d

L-ivate

checkingFile(j ava. lang. String sel File)
This method passes the file to the Echo24 class wtich parses
the file and returns a filetags object This object and the userBean
object are passed to the security manager for the decision.

/oi d

dOPOSt(j avax. servlet. http. HtpServl et Request 1eq,
javax.servlet. http. HtpServl et Response res)

Processing user's POST request.

voi d

L-ivate

errorGoBack(j ava.lang. String error)
Defines severa types of error conditions depending on the
specified error

voi d

f-ivate

exitLinks()
Displays the available links to direct control in anotler serviet,
in case the user wants to cancel this procedure

java.léng. Strin

g

f-ivate

findFiIename(j ava.lang. String stringFile)
This method extracts the name of the file from incoming
stream, and checksiif it isavaid XML filename

voi d

f-ivate

printData()
Prints the user's personal and Security data retriever] from the

database that contained in the UserBean object

java.leng. Strin

g

L-ivate

uploadFile()
Uploads the file to a temporary position for further grocessing

Methods inherited from class javax.servlet.http.HttpServiet

doDel et e,

service

doGet, doOptions, doPut, doTrace, getlLastMdified, service,

Methods inherited from class javax.servlet.GenericServiet

destroy,
get Ser vl et Cont ext ,

get I nit Paraneter, get | ni t Par amet er Nanes, get Ser vl et Confi g,
get Servl etInfo, getServletNanme, init, init, log, |oc

Methods inherited from class java.lang.Object

wai t,

cl one,

equal s, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait

Field Detail

user

136

private dbsection.UserBean user

req

private javax.servlet.http.HttpServietRequest req

res

private javax.servlet.http.HttpServietResponse res

uploaded

private javalang.String uploaded

sdectedFile

private javaio.File selectedFile

file

private javaio.File file

out

private javaio.PrintWriter out

MAXIMUM_FILE_LINES

private int MAXIMUM_FILE_LINES

decision

private boolean decision

desiredClass

private javalang.String desiredClass

desiredCountry

private java.lang.String desiredCountry

fouo
private javalang.String fouo

137

fiuo

private java.lang.String fiuo

tempFile

private java.lang.String tempFile

filename

private java.lang.String filename

ending

private java.lang.String ending

errorState

private javalang.String error State

fileSecAttr

private java.lang.String[] fileSecAttr

fileTags

static dbsection.FileTags fileTags

manager

static dbsection.SecM etadataM anager manager

Constructor Detail

SaveFile

public SaveFile()

Method Detail

doPost

public void doPost(javax.servlet.http.HitpServietRequest reqg,
javax.servlet.http.HttpServletResponse res)
throws java.io.l OException
Processing user's POST request.
Overrides:
doPost in C|a$j avax.servlet.http. Ht pServl et

138

Returns;

void.

Throws,

javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

uploadFile

private java.lang.String uploadFile()
throws java.io.l OException
Uploads the file to a temporary position for further processing
Returns:
If everything was done successfully returns the name of the temporary file
Throws.
java.io. | OException - N case acommunication exception is thrown

findFilename

private java.lang.String findFilename(javalang.String stringFile)

This method extracts the name of the file from incoming stream, and checks if it
isavaid XML filename

Parameters:

stringFil e - The complete name of thefile

Returns:

The name of thefile found

errorGoBack

private void error GoBack (java.lang.String error)

Defines severa types of error conditions depending on the specified error
Parameters:

error - Theerror specifies the cause of the problem.

Returns:

void.

checkingFile

private void checkingFile(java.lang.String selFile)

This method passes the file to the Echo24 class which parses the file and returns a
filetags object This object and the userBean object are passed to the security manager for
the decision.

Parameters:

sel Fi | e - the selected file to be parsed

Returns:

void.

139

askConfirm

private void askConfirm(java.lang.String status)

In the cases where the status found is "upgrade” or "downgrade" this method
displays the appropriate message

Parameters:

status - The results of the tag's comparison

Returns:

void.

exitLinks

private void exitLinks()

Displays the available links to direct control in another serviet, in case the user
wants to cancel this procedure

Returns:

void.

printData

private void printData()

Prints the user's personal and Security data retrieved from the database that
contained in the UserBean object

Returns:

void.

140

dbsection
Class SecM etadataM anager

javalang.Object

I
+-dbsection.SecM etadataM anager

public class SecM etadataM anager

extends java.lang.Object

The class SecMetadataM anager is responsible to compare the received UserBean
and FileTags objects and to produce the necessary decision according to the policy

Field Summary
pri sate approved
bool ean approvead
pri sate .
dbsectior. Fil eTag fileTags
s
pri sate
dbsecti or. User Bea m
n

Constructor Summary

SecM etadataM anager (dbsection. Fil eTags tags, dbsection. UserEean user)
The default constructor of the class receives the passed objects and init alizes the
variable of the decision as false

Method Summary

java.leng. Strin comparerags(j ava. | ang. String desiredd ass,
9 java.lang. String desiredCountry, java.lang.String fouo,

java.lang. String fiuo)
This method compares the tags of the file wi h those of
the user, and returns the result.

private int getClassLevel(j ava. I ang. String classifi sation)
This method converts a classification level t¢ a number
to be easiest to compare

bool ear makeDecision()

141

This method makes the decision

Methods inherited from class java.lang.Object

wait,

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait

Field Detail

fileTags

private dbsection.FileTags fileTags

userBean

private dbsection.UserBean user Bean

approved

private boolean approved

Constructor Detail

SecM etadataM anager

public SecM etadataM anager (dbsection.FileTags tags,
dbsection.UserBean user)
The default constructor of the class receives the passed objects and initializes the

variable of the decision asfase

Parameters:
tags - The FileTags object representing the tags of a specific file

Method Detail

result.

makeDecision

public boolean makeDecision ()

This method makes the decision

Returns:

A boolean variable containing the decision

compareTags

public javalang.String compareT ags(java.lang.String desiredClass,
javalang.String desiredCountry,
javalang.String fouo,
javalang.String fiuo)

This method compares the tags of the file with those of the user, and returns the

Returns:
142

A String that can be upgrade, downgrade or normal

getClassLevel
private int getClassL evel(java.lang.String classification)
This method converts a classification level to a number to be easiest to compare
Returns:
An integer representing the classification level
dbsection
Class ServerLogin

javalang.Object

+javax.servlet.GenericServiet

|
+-javax.servlet.http.HttpServiet

|
+-dbsection.ServerL ogin
All Implemented I nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.servlet.ServletConfig

public class ServerLogin

extends javax.servlet.http.HttpServlet

The class ServerLogin defines a serviet that is responsible to authenticate
associated serverstrying to login. Upon positive authentication, all the names of the files
that are available to that specific server are sent for further processing.

See Also:
Seridlized Form
Field Summary
java.util.Vector avaFiles
private java.sql.Conne:tion connection
private int CONNECTION ERROF!
private java.lang.Strig cur ServiceClass
private java.lang.Strig cur ServiceName
private java.lang.Strig cur ServicePos
private java.lang.Strig CurUserCountryId

143

private int curUserld
private dbBean

dbsecti on. DBConnect i onBean ——
java.l ang. Exception dbe

private int

DRIVER ERROR

private java.util.Enunzration

enum

private java.lang.Strig filename

private int INVALID USER
private java.io.PrintV iter out

private int

QUERY ERROR

private int

QUERY ERROR EXC

j avax.gr&eir\:/Tte? .http. HtpServl et Request %

j avax. I[s):eir\</allte(?(.http. HtpServl et Respons r onse

e
private java.sql.Resul Set rs
private java.sql.Resul Set rs2
private java.lang.Strig[] savedFilename
private java.lang.Strig server
private java.lang.Strig server Name

j avax. ’;reir\ﬁte? . Servl et Qut put St ream w
private java.lang.Strig m

144

dbsecti on. User Bean user

Fiddsinherited from class javax.servlet.http.HttpServlet

Fieldsinherited from class javax.serviet.GenericServlet

Constructor Summary

ServerLogin()

Method Summary

ve d dOGet(j avax.servlet. http. Ht pServl et Request request,
javax.servlet.http. H t pServl et Response response)
Processing user's GET request.
ve d dOPOS(j avax.servlet.http. H t pServl et Request request
javax.servlet.http. Ht pServl et Response response)
Processing user's POST request by simply pissing the
control to the doGet.
pri sate findFiles(j ava.lang. String server Code)

java.util. Vector

Finds dl the files that are releasable to that spec fic server
according to the security authorizations contained in the Jatabase

pri sate
java.lan¢. String[

]

findVersion(j ava. | ang. String ful | Name)
This method analyses the filename to extract the dite and the
time, the file saved in the system which actually reprisents the
version of thefile.

y pri sate openConnection()
vel Opens a connection with the database to rerieve the
available files of this user
I Voi d pri sate validateServer(j ava. | ang. String nane,

java.lang. String pass)
Authenticates a server with the given username & jassword

Methods inherited from class javax.servlet.http.HttpServiet

doDel ete, doOptions, doPut, doTrace, getlLastMdified, service, scrvice

M ethods inherited from class javax.servlet.GenericServlet

145

dest r oy, get I ni t Paraneter, get | ni t Par amet er Nanes, get Ser vl et Confi g,

get Servl et Context, getServletlnfo, getServlietNane, init, init, log, |og

Methods inherited from class java.lang.Obj ect

clone, equals, finalize, getC ass, hashCode, notify, notifyAll,

wait, wait

toString,

Field Detail

DRIVER _ERROR

private fina int DRIVER_ERROR
See Also:
Congtant Field Vaues

CONNECTION_ERROR

private fina int CONNECTION_ERROR
See Also:
Congtant Field Values

QUERY_ERROR

private fina int QUERY_ERROR
See Also:
Congtant Field Values

QUERY_ERROR_EXC

private fina int QUERY_ERROR_EXC
See Also:
Congtant Field Values

INVALID_USER

private final int INVALID_USER
See Also:
Congtant Field Vaues

request

private javax.servlet.http.HttpServietRequest request

response
private javax.servlet.http.HttpServlietResponse response

146

connection

private java.sgl.Connection connection

out

private java.io.PrintWriter out

serverOut

private javax.servlet.ServletOutputStream server Out

rs

private java.sgl.ResultSet rs

rs2

private java.sgl.ResultSet rs2

dbBean

private dbsection.DBConnectionBean dbBean

curServiceName

private java.lang.String cur ServiceName

curServicePos

private java.lang.String cur ServicePos

curServiceClass

private java.lang.String cur ServiceClass

curUserCountryld

private javalang.String cur User Countryld

curUserld

private int curUserld

dbe

147

public java.lang.Exception dbe

user

public dbsection.UserBean user

avaFiles

public java.util.Vector avaFiles

enum

private java.util. Enumeration enum

serverName

private javalang.String server Name

serverPass

private javalang.String server Pass

filename

private java.lang.String filename

server

private java.lang.String ser ver

savedFilename

private java.lang.String[] savedFilename

Constructor Detail

ServerLogin

public ServerLogin()

Method Detail

doPost

public void doPost(javax.servlet.http.HitpServietRequest request,
javax.servlet.http.HitpServletResponse response)
throws javax.servlet.ServletException,
javaio.lOException

148

Processing user's POST request by ssmply passing the control to the doGet.
Overrides:

doPost in C|a$j avax.servlet.http. Ht pServl et

Parameters:

request - Theclient's request.

response - The response to the client.

Returns;

void.

Throws,

javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

doGet

public void doGet (javax.servlet.http.HttpServietRequest request,

javax.servlet.http.HttpServl etResponse response)
throws javax.servlet.ServletException,

javaio.lOException

Processing user's GET request.

Overrides:

doGet in Classjavax. servlet. http. H tpServl et

Parameters:

request - the client request.

response - the response to client.

Returns:

void.

Throws:

j avax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. | OException - In case of al/O error encountered

validateServer

private void validateSer ver (java.lang.String name,
javalang.String pass)

Authenticates a server with the given username & password

Parameters:

name - The server's username.

pass - The server's password.

Returns;

void.

Throws,

j avax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. 1 OException - In case of aservlet error encountered

findVersion

149

private java.lang.String[] findVersion (java.lang.String fullName)

This method analyses the filename to extract the date and the time, the file saved
in the system which actually represents the version of the file.

Parameters:

ful I Nane - The complete name of thefile

Returns:

An array of string containing the date and the time

findFiles

private java.util.Vector findFilegjavalang.String serverCode)

Finds al the files that are rleasable to that specific server according to the
security authorizations contained in the database

Parameters:

server Code - The code of this server that recognized by the system

Returns:

A Vector containing the releasable files

Throws:

java. | ang. Exception - If an error found during the process

openConnection

private void openConnection()

Opens a connection with the database to retrieve the available files of this user
Returns:

void

150

dbsection
Class UpdateDb

javalang.Object

+javax.servlet.GenericServiet

+-javax.servlet.http.HttpServiet

+-dbsection.UpdateDb

All Implemented I nterfaces:

javaio.Serializable, javax.serviet.Servlet, javax.servlet.ServletConfig

public class UpdateDb

extends javax.servlet.http.HttpServlet

The UpdateDb class gets an aready parsed file, updates the database and saves

the file in the "secure” server area.

See Also:

Serialized Form

Field Summary

private dbBean
dbsecti on. DBConnect i onBean -

private java.lang.Strig desiredClass

private int fieldld

private java.lang.Strig filename

private java.lang.Strig

finalFilename

private dbsection. User 3ean

newuser
private java.io.PrintV iter out
private
javax.servlet.http. HtpServl et Request req

151

private

javax.servlet. http. HtpServl et Respons res
e
' private java.lang.String temQFiIe

Fieldsinherited from classjavax.servlet.http.HttpServlet

Fieldsinherited from classjavax.servlet.GenericServlet

Constructor Summary

UpdateDhby)

Method Summary

Yoi d f-ivate oogyFiIe()
Copiesthe file from the temporary server areato the simulated
permanent secure area
' Voi d Frivate createFinalFilename()
Creates the final filename that the file will get in crder to be
saved, by adding the date and the time
' Cva |F';1i vae createUser Directory()
g e ene s Creates a new directory according to user's classi‘ication in
case there is not one yet
I soi d dOGﬁ(j avax. servlet.http. H t pServl et Request r 2quest,
javax.servlet. http. Htt pServl et Response response)
Processing user's GET request by smply passing the control to
the doPost.
I void doPost(j avax. servl et. http. Ht t pSer vl et Request 1 eq,
javax. servlet. http. HtpServl et Response res)
Processing user's POST request.
' Voi d Frivate exitLinks()
Displays the available links to direct the control n another
serviet, in case the user wantsto cancel this procedure
' Yo d Fivate openConnection()

Opens a connection with the database to retrieve th: available
files of this user

152

voi d

Frivate printData()
Prints the user's personal and Security data retriever] from the

database that contained in the UserBean object

bool ear

Frivate updateDatabase()
Updates the database with the new file's data and metadata

Methods inherited from class javax.servlet.http.HttpServiet

doDel ete, doOptions, doPut, doTrace, getlLastModified, service, service

Methodsinherited from class javax.servlet.GenericServiet

dest r oy, get I ni t Paraneter, get | ni t Par amet er Nanes, get Ser vl et Confi g,

get Servl et Context, getServletlnfo, getServletNane, init, init, log, |og

Methods inherited from class java.lang.Object

wai t,

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString,
wait, wait

Field Detail

newuser

private dbsection.UserBean newuser

out

private javaio.PrintWriter out

req

private javax.servlet.http.HttpServietRequest req

res

private javax.servlet.http.HttpServietResponse res

fieldld

private int fieldld

desiredClass

private java.lang.String desiredClass

tempFile

153

private java.lang.String tempFile

filename

private java.lang.String filename

finalFilename

private java.lang.String finalFilename

dbBean

private dbsection.DBConnectionBean dbBean

Constructor Detail

UpdateDb

public UpdateDh()

Method Detail

doGet

public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException,
javaio.lOException
Processing user's GET request by smply passing the control to the doPost.
Overrides:
doGet in ClaSSj avax.servlet.http. HtpServl et
Parameters.
request - Theclient request.
response - The responseto client.
Returns:
void.
Throws:
javax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

doPost

public void doPost(javax.serviet.http.HttpServietRequest req,
javax.servlet.http.HttpServletResponse res)
throws java.io.l OException
Processing user's POST request.
Overrides:
doPost in C|a$j avax.servlet.http. Ht pServl et

154

area

Returns;

void.

Throws,

j avax. servl et. Servl et Except i on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

updateDatabase

private boolean updateDatabase()

Updates the database with the new file's data and metadata

Returns:

A boolean variable is returned to verify the success of the procedure

copyFile

private void copyFile()
throws java.io.l OException
Copies the file from the temporary server areato the simulated permanent secure

Returns:

void.

Throws.

java.io. | OException - In caseof al/O error encounter ed

createFinalFilename

private void createFinalFilename()
Creates the final filename that the file will get in order to be saved, by adding the

date and the time

yet

Returns:
void.

createUserDirectory

private java.lang.String createUser Directory()
throws java.lang.SecurityException
Creates a new directory according to user's classification in case there is not one

Returns:

The newly created directory

Throws:

java.lang. SecurityException - In the case of the credtion is not alowed by the

security manager

openConnection

155

private void openConnection()

Opens a connection with the database to retrieve the available files of this user
Returns:

void

printData

private void printData()

Prints the user's personal and Security data retrieved from the database that
contained in the UserBean object

Returns:

void.

exitLinks

private void exitLinks()

Displaysthe available linksto direct the control in another servlet, in case the user
wants to cancel this procedure

Returns:

void.

156

dbsection
Class User Bean

javalang.Object

I
+--dbsection.User Bean

public class UserBean
extends java.lang.Object
This class defines a bean used to maintain user's data during the session.

Field Summary

[-ivate .
java.util.Vecto avaFiles
r

F-ivate .
java.léng. Strin city
g

f-ivate
java.leng. Strin countryld
)
) E‘ivate. email
java.léeng. Strin ciial
)
) p"lvate. first Name
java.leng. Strin T NATIE
)

fivate
java.leng. Strin lastName
g
' Pvae loginName
java.léng. Strin
g
Cava.ling St middiel nitial
java.léeng. Strin rnadicirnitial
)

f-ivate
java.leng. Strin assword
)

F-ivate
java.leng. Strin phone
)

157

F-ivate i
java.leng. Strin serviceClass
)

[rivate .
java.lzng.Strin serviceName
g

[-ivate SErvi o5
java.leng. Strin —ceIE
g

f-ivate
java.leng. Strin state
)

f-ivate
java.leng. Strin street
e F-ivate user|D
i

f-ivate .
java.leng. Strin 21p

Constructor Summary

UserBean()
The default congtructor initializes a new object by calling the getReset() method

Method Summary

java.util. Vecto getAvaFiIa;()
Gets user's available files stored in the object

java.leng. Strin getCity()
Gets user's city name

java.leng. Strin getCountryldo)
Getsuser'scountry ID

java.leng. Strin getEmail()
Gets user's email address

java.léeng. Strin getFirgName()
Gets user'sfirst name

java.léeng. Strin getFuIIName()
Gets user's full name name (first + middle + lat)

java.leng. Strin getL astNamey)
Gets user's last name

java.léng. Strin getL%inName()
Gets user's login name

158

j ava.

| e¢ng.

Strin

getMiddlel nitial ()
Gets user's middleinitia

j ava.

| eng.

Strin

getPassword()
Getsuser's password

j ava.

| eng.

Strin

getPhone()
Gets user's phone number

j ava.

I ¢éng.

Strin

getReset ()
Resets dl fields by creating new empty objects

j ava.

| ¢ng.

Strin

getServiceClass()
Getsuser's service classification

j ava.

| e¢ng.

Strin

getServiceNamey()
Gets user's service name

j ava.

| eng.

Strin

getServicePos()
Gets user's service position

j ava.

| eng.

Strin

getState()
Getsuser's state

j ava.

I ¢ng.

Strin

getStreet ()
Getsuser's street

int

getUser1D()
Getsuser'sID

j ava.

| e¢ng.

Strin

getZip()
Gets user's zip

j ava.

| eng.

Strin

secString()
Gets user's security dataal ina String

voi d

setAvaFiles(j ava. util . Vector newAvaFi | es)
Sets user's available files with a new value

voi d

setCity(j ava. I ang. String newCity)
Sets user's city name with anew value

voi d

setCountryld(j ava. I ang. String newCountry d)
Sets user's country 1D with anew vaue

voi d

setEmail(j ava. I ang. String newEnail)
Sets user's email address with anew vaue

voi d

setFirstName(j ava. I ang. String newFi r st Na re)
Sets user's first name with a new vaue

voi d

setLastName(j ava. | ang. String newLast Nam)
Sets user's last name with a new vaue

voi d

setLoginName(j ava. I ang. String newLogi nNine)
Sets user's login name with a new value

159

void setMiddlel nitial (j ava. | ang. String newM ddl el nitial)
Sets user's middle initial with a new vaue

void setPassword(j ava. | ang. String newPasswor d)
Sets user's password with a new vaue
void setPhone(j ava. | ang. String newPhone)
Sets user's phone number with anew value
void setServiceCIassu ava.l ang. String newServi :eCl ass)
Sets user's service classification with anew vaue
void setServiceName(j ava. | ang. String newSer vi ceName)
Sets user's service name with a new velue
void setServicePos(j ava. | ang. String newSer vi ce 20s)
Sets user's service position with a new value
void setState(j ava. | ang. String newst at e)
Sets user's state with anew value
void setStreet(java. 1 ang. String newstreet)
Sets user's street name with anew value
void setUserD(int newUser | D)
Sets user ID with anew value
void setZip(j ava. | ang. String newZi p)
Sets user's zip code with a new value
' java.leng. Strin toString()
’ Gets user's personal data all in a String
Methods inherited from class java.lang.Obj ect
' clone, equals, finalize, getdass, hashCode, notify, notifyAl, wait,
wait, wait
Field Detail
userlD

private int userlD

firstName

private javalang.String firstName

middlelnitia

private java.lang.String middlel nitial

160

|astName

private java.lang.String lastName

Street

private javalang.String street

city

private java.lang.String city

zp

private javalang.String zip

state

private javalang.String state

phone

private java.lang.String phone

loginName

private java.lang.String loginName

password

private java.lang.String password

email

private java.lang.String email

serviceName

private javalang.String serviceName

servicePos

private javalang.String servicePos

serviceClass

161

private java.lang.String serviceClass

countryld

private java.lang.String countryld

avaFiles

private java.util.Vector avaFiles

Constructor Detail

UserBean

public UserBean()
The default constructor initializes a new object by calling the getReset() method

Method Detail

getReset

public java.lang.String getReset()

Resets all fields by creating new empty objects
Returns:

An empty String

getUserlD

public int getUser I D()
Getsusar's1D
Returns;

the user's ID

setUserlD

public void setUser | D(int newUser| D)
Sets user ID with anew vaue
Parameters:

newUser I D - the new userlD

Returns;

void

getFirstName

public java.lang.String getFir stName()
Gets user's first name

Returns:

the user's first name

162

setFirstName

public void setFirstName(java.lang.String newFirstName)
Sets user's first name with a new value

Parameters:

newFi r st Nane - The new first name

Returns:

void

getMiddlelnitial

public javalang.String getMiddlel nitial ()
Gets user's middle initial

Returns:

the user's middle initial

setMiddlel nitial

public void setMiddlel nitial(javalang.String newMiddlelnitial)
Sets user's middle initial with a new value

Returns:

void

getLastName

public javalang.String getL astName()
Gets user's last name

Returns;

the user's last name

setLastName

public void setl astName(java.lang.String newL astName)
Sets user's last name with anew value

Returns:

void

getFullName

public javalang.String getFullName()

Gets user's full name name (first + middle + last)
Returns:

the user's full name

setStreet

163

public void setStreet (javalang.String newStreet)
Sets user's street name with anew vaue
Returns:

void

setCity

public void setCity(java.lang.String newCity)
Sets user's city name with anew vaue
Returns:

void

stZip

public void setZip(java.lang.String newZip)
Sets user's zip code with anew value
Returns:

void

setState

public void setState(java.lang.String newState)
Sets user's state with a new value

Returns;

void

setPhone

public void setPhone(java.lang.String newPhone)
Sets user's phone number with anew value
Returns:

void

setLoginName

public void setL oginName(java.lang.String newL oginName)
Sets user's login name with anew value

Returns:

void

setPassword

public void setPasswor d(java.lang.String newPassword)
Sets user's password with anew value

Returns:

void

164

setEmail

public void setEmail (java.lang.String newEmail)
Sets user's email address with anew value
Returns:

void

setServiceName

public void setServiceName(javalang.String newServiceName)
Sets user's service hame with anew value

Returns:

void

setServicePos

public void setServicePos (javalang.String new ServicePos)
Sets user's service position with anew value

Returns:

void

setServiceClass

public void setServiceClass(javalang.String newServiceClass)
Sets user's service classification with anew value

Returns;

void

setCountryld

public void setCountryl d(java.lang.String newCountryld)
Sets user's country 1D with anew value

Returns:

void

setAvaFiles

public void setAvaFiles(java.util.Vector newAvaFiles)
Sets user's available files with a new value

Returns:

void

getStreet
public javalang.String get Street()

165

Gets user's street
Returns:
the user's street

getCity

public javalang.String getCity()
Gets user's city name

Returns:

the user's city name

getZip

public javalang.String getZip()
Gets user's zip

Returns:

the user's zip

getState

public java.lang.String getStatg()
Gets user's state

Returns;

the user's state

getPhone

public javalang.String getPhone()
Gets user's phone number
Returns:

the user's phone number

getLoginName

public java.lang.String getL oginName()
Gets user's login name

Returns:

the user's login name

getPassword

public java.lang.String getPasswor d()
Gets user's password

Returns:

the user's password

166

getEmail

public javalang.String getEmail()
Gets user's email address
Returns;

the user's email address

getServiceName

public javalang.String get ServiceName()
Gets user's service name

Returns:

the user's service name

getServicePos

public java.lang.String get Ser vicePos()
Gets user's service position

Returns:

the user's service position

getServiceClass

public java.lang.String getSer viceClasy)
Gets user's service classification
Returns;

the user's service classification

getCountryld

public java.lang.String getCountryl d()
Getsuser's country 1D

Returns:

the user's country 1D

getAvaFiles

public java. util.Vector getAvaFiles()

Gets user's available files stored in the object
Returns:

the user's available files

toString

public javalang.String toString()
Gets user's personal data all in a String
Overrides:

toString in classjava. | ang. Obj ect
Returns:

167

the user's personal data

secString

public javalang.String secString()
Gets user's security data al in a String
Returns:
the user's security data
dbsection

Class User Options

javalang.Object
I
+javax.servlet.GenericServiet
|
+-javax.servlet.http.HttpServiet

|
+-dbsection.User Options

All Implemented I nterfaces:
javaio.Serializable, javax.serviet.Servlet, javax.serviet.ServletConfig

public class User Options

extends javax.servlet.http.HttpServlet

The class UserOptions creates a page displaying the user's information (personal
and security) and the available options for that session. After the user's selection pass the
control to the next UserSelection serviet

See Also:

Seridlized Form

Fidd Summary

_ private avaFiles
java.util. Vector -

private newuser
dbsecti on. User Bean -

private
java.io.PrintWite
r

out

Fieldsinherited from class javax.servlet.http.HttpServiet

Fieldsinherited from class javax.servlet.GenericSer viet

168

Constructor Summary
User Options()

Method Summary

void dOGet(j avax. servl et. http. H t pServl et Request req,

javax.servlet.http. H t pServl et Response res)
Processing user's GET request.

privat printData()
Prints the user's personal and Security data retrieved from the

database that contained in the UserBean object

e viid

privat printOptions()

e void Crestes a drop down list that presents the user's available options.

M ethods inherited from class javax.serviet.http.HttpServlet

doDel ete, doOptions, doPost, doPut, doTrace, getlLastMdified, service,
service

Methods inherited from class javax.servlet.GenericServiet

destr oy, get I ni t Paraneter, get | ni t Par anet er Nanes, get Servl et Confi g,
get Servl et Context, getServletlnfo, getServlietNane, init, init, log, |og

Methods inherited from class java.lang.Object

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait, wait

Field Detail

newuser

private dbsection.UserBean newuser

avaFiles

private java.util.Vector avaFiles

out

private javaio.PrintWriter out

Constructor Detail

UserOptions

169

public User Options()

Method Detail

doGet

public void doGet (javax.servlet.http.HttpServietRequest reqg,
javax.servlet.http.HttpServletResponse res)

throws java.io.l OException

Processing user's GET request.

Overrides:

doGet iN C|a$j avax.servlet.http. HtpServl et

Parameters:

req - the client request.

res - the responseto client.

Returns:

void.

Throws.

javax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. 1 OException - In case of al/O error encountered

printData

private void printData()

Prints the user's personal and Security data retrieved from the database that
contained in the UserBean object

Returns:

void.

printOptions

private void printOptions()

Creates adrop down list that presents the user's available options.
Returns:

void.

170

dbsection
Class User Selection

javalang.Object
I

+javax.servlet.GenericServiet
|
+-javax.servlet.http.HttpServiet

|
+-dbsection.User Selection

All Implemented I nterfaces:
javaio.Seridlizable, javax.serviet.Servlet, javax.servlet.ServletConfig

public class User Selection

extends javax.servlet.http.HttpServlet

The UserSelection class is responsible to get the user's selection from the main
menu and to redirect the control to the respective servlet for further processing

See Also:
Serialized Form
Field Summary
private java.util.Vectr avaFiles
private java.lang.Strig FileM enu
private dbsection. User 3ean freshuser
private java.lang.Strig nextServlet
private java.io.PrintV iter out
private
javax.servlet.http. H tpServl et Request req
private res
javax.servlet.http. HtpServl et Respons —
e

171

Fieldsinherited from classjavax.servlet.http.HttpServlet

Fields inherited from class javax.servlet.GenericServlet

Constructor Summary

User Selection()

Method Summary

e

voi d

privat continueSession()
Continue the session and pass the control to the next servlet.

void doGet(j avax. servlet. http. Ht t pServl et Request request,
javax.servlet.http. H t pServl et Response response)

Processing user's GET request by smply passing the cortrol to the
doPost.

void doPost(j avax. servl et. http. Ht t pSer vl et Request req,
javax.servlet.http. H t pServl et Response res)

Processing user's POST request.

Methods inherited from class javax.servlet.http.HttpServlet

doDel ete, doOptions, doPut, doTrace, getlLastModified, service, service

Methods inherited from class javax.serviet.GenericSer vlet

destroy, get I ni t Paraneter, get | ni t Par amet er Nanes, get Ser vl et Confi g,

get Servl et Context, getServletlnfo, getServletNane, init, init, log, |oc

Methods inherited from class java.lang.Object

wai t,

clone, equals, finalize, getC ass, hashCode, notify, notifyAll, toString,
wait, wait

Field Detail

req
private javax.servlet.http.HttpServletRequest req

res

172

private javax.servlet.http.HttpServletResponse res

freshuser

private dbsection.UserBean freshuser

avaFiles

private java.util.Vector avaFiles

out

private javaio.PrintWriter out

nextServlet

private javalang.String nextServlet

FileMenu

private javalang.String FileMenu

Constructor Detail

UserSelection

public User Selection()

Method Detail

doGet

public void doGet (javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)
throws javax.servlet.ServletException,
java.io.lOException
Processing user's GET request by simply passing the control to the doPost.
Overrides:
doGet iN C|aSSj avax.servlet.http. HtpServl et
Parameters:
request - Theclient'srequest.
response - The response to the client.
Returns:
void.
Throws.
j avax. servl et. Servl et Excepti on - In case of aservlet error encountered
java.io. 1 OException - In case of al/O error encountered

doPost
173

public void doPost(javax.servlet.http.HttpServletRequest req,
javax.servlet.http.HttpServletResponse res)

throws java.io.l OException

Processing user's POST request.

Overrides:

doPost in C|a$j avax.servlet.http. Ht pServl et

Parameters:

req - the client request.

res - the responseto client.

Returns:

void.

Throws,

javax. servl et. Servl et Excepti on - In case of aservlet error encountered

java.io. 1 OException - In case of al/O error encountered

continueSession

private void continueSession()
throws java.lang.Exception
Continue the session and pass the control to the next servlet.
Returns:
void.
Throws:

Exception. - Incase aninvaid situation is encountered
java. | ang. Excepti on

174

APPENDIX B. JAVA COD E

175

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

packagedbsection;

import java.io.*;

import java.util.*;

import java.sgl.*;

import dbsection.*;

/**

* This classimplements abean that is used from many ot her classes
* to process al transactions with the backend database.

* |tisaunique point of connection with the database,

* using the JDBC API.

* @author Panos

*/

public class DBConnectionBean

{
private boolean loaded;

private boolean connected;
private String url;

private String driver;

private String user;

private String password;

private Connection con;

private Statement statement;
private String query;

private String update;

private String primaryKeyQuery;

/**

* The default constructor of the calssthat setsthe
* appropriate url and driver for the database

* @return void.

*/

public void DBConnectionBean()

{
loaded = false;
connected = falsg;

url ="jdbc:odbc:UserDB" ;
176

driver ="sun.jdbc.odbc .JdbcOdbcDriver" ;

user = "panos’ ;
password = "greek" ;
con = null;

query = new String("");
primaryKeyQuery = new String();

/**

* Set the URL of the database.

* @param newUrl The new URL
* @return void.

*/

public void setUrl(String newUrl)

url = newUrl;

}

/**

* Setsthe driver for the database

* @param newDriver The new driver.
* @return void.

*/

public void setDriver(String newDriver)

{

driver = newDriver;

}

/**

* Setsthe DB user name.

* @param newUser The new user name.
* @return void.

*/

public void setUser(String newUser)

{

user = newUssr;

}

/**

* Setsthe DB password.

* @param newPassword The new password.
* @return void.

*/

public void setPassword(String newPassword)
{

password = newPassword;
}
/**
* Loadsthedriver
177

* @return Trueif thedriver isloaded successfully
*/
public boolean isloaded()

{
try

Class.forName(driver);
loaded = true;

}
catch(ClassNotFoundException cnfe)

{

loaded = falsg;
}
return loaded;

} // end of isLoaded()

/**

* Establish the connection with the DB.

* @return Trueif the connection is established.
*/

private boolean isConnected()

{
try

con = DriverManager.getConnection(url, user, password);
statement = con.createStatement();
connected = true;
}
catch(SQLException sgle) {
connected = false;

return connected;

}
/**

* Setsthe query string.

* @param query The new query string.

* @return A ResultSet object containing the results
* of the query

*/

public ResultSet query(String query)

{
this.query = query;
return getQuery();

/**

* Queriesthe DB and return the result ResultSet object
* @return A ResultSet object containing the results
* of the query

178

*/
public ResultSet getQuery()

ResultSet rs=null;
if(isConnected())
{

try
{
rs = statement.executeQuery(query);

}
catch(Exception €)
System.out.printin(*Inside DBConnection exceptionis=" + €);

}
}

returnrs,;
}
/**
* Setsthe query.
* @param query The new query.
* @return void.
*/
public void setQuery(String query)

{
this.query = query;

/**
* Setsthe update query.
* @param update The update query.
* @return void.
*/
public void setUpdate(String update)
{
this.update = update;

/**

* Executes an update query by calling the getUpdate method
* @param updateQuery the update query
* @return An integer representing the primary key
* or -1if an error happens.
*/
publicint update(String updateQuery)
{
update = updateQuery;

return getUpdate();
}

179

/**
* Executes an update query.
* @return An integer representing the primary key
* or -1if an error happens.
*/
public int getUpdate()
{

int result = -1;
if(isConnected())
{

try
{

result = statement.executeUpdate(update);
isClose();

catch(Exception €) {
e.printStackTrace();
}

return result;

}

/**

* This method closes the connection wi th the database
* @return A boolean trueif the connection is closed
* successfully
*/
public boolean isClose()
{
try

{
con.close();
statement.close();

catch(Exception e) {}
connected = falsg;

return true;

}
/**

* Setsthe primary key for the query.
* @param newPrimaryKeyQuery The new primary key for that query
* @return void.
*/
public void setPrimaryK eyQuery(String newPrimaryK eyQuery)
{

primaryKeyQuery = newPrimaryKeyQuery;

180

/**
* Obtainsanew primary key in the table specified by the current primary.
* Theresult set of the ordered set of existing primary keysis examined
* sequentially, until the smalest non used positive integer isfound.
* This method may only be used for tables using integersasaprimary key.
* @return the new primary key or -1 if an error happens.
*/
publicint getPrimaryKey()
{
int primaryKey = -1,
try
{
ResultSet rs = query(primaryKeyQuery);
if(rs.next())

primaryKey = rs.getint(1);

do
{

++primaryKey;
}while(rs.next() & & (primaryKey == rs.getint(1)));
}
catch(SQLException €)
{

e.printStack Trace();
primaryKey = -1,
return primaryKey;

} // End of DBConnectionBean class

181

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Major (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

packagedbsection;

import java.io.*;

import java.io.Writer ;

import java.net* ;

import org.xml.sax.*;

import org.xml.sax.helpers.DefaultHandl er;

import javax.xml.parsers.SAX ParserFactory;

import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAX Parser;

/**

* The class Echo24 isresponsible to

* parse the passed file and extract dl of its
* elements and attributes

* @author Panos

*/

public class Echo24 extends DefaultHandler

/I Data member
static private Writer out;
private String indentString =" "; // Amount to indent
private int indentLevel = 0;

private String[] parsedFile ;
private File file;
private FileTags fileTags;

private boolean secElementsFound = false;
private boolean usSecElementFound =false;
private bool ean nonusSecElementFounf = false;

private String secCategory ="" ;

private int index=0;
/**
* The default constructor of the class
*/
public Echo24()
{

182

/**

* This method parses the file by using one
* of the SAXParsers from the SAX ParserFactory
* @param filename The name of thefileto be parsed

* @return A FileTags object containing all the security tags
* of the passed file

* @exception Throwable In case of an error during the process
*/

public FileTags parseFile(String filename)
{

/I Useaninstance of ourselvesasthe SAX event handler *******
DefaultHandler handler = Echo24.this;

/I Use the default parser
SAXParserFactory factory = SAXParserFactory.newlnstance();

try
{
Il Set up output stream
out = new OutputStreamWriter(System.out, "UTF8");
file = new File(filename) ;

I passthefileto the new fileTags object

/I sothisfileTags object isrelated to thisfile
fileTags = new FileTag(file) ;

I/ Parse the input

SAXParser saxParser = factory.newSAX Parser();
saxParser.parse(filename, handler);

parsedFile = this.getParsedFile() ;
catch (Throwablet)
{

fileTags=null;

return fileTags;

}

/**

* Thismethod parsesthefilein the passed URL by using one
* of the SAXParsers from the SAX ParserFactory
* @param filename The name of the file to be parsed

* @return A FileTags object containing all the security tags
* of the passed file

183

* @exception ThrowableIn case of an error during the process
*/
public FileTags mainNew(String argv)
{
/I Use an instance of ourselves asthe SAX event handler *******
DefaultHandler handler = Echo24.this;

/I Use the default parser
SAXParserFactory factory = SAX ParserFactory.newlnstance();
try
{
URL checkUrl = new URL (argv) ;
/I Set up output stream

out = new OutputStreamWriter(System.out, "UTF8");
file=new File(argv) ;

/I passthefileto the new fileTags object
/Il so thisfileTags object isrelated to thisfile
fileTags = new FileTag(file) ;

Il Parse the input
SAXParser saxParser = factory.newSAXParser();

saxParser.parse(argv , handler);

parsedFile = this.getParsedFile() ;

}
catch (Throwablet)

t.printStack Trace();

return fileTags;

}

/**
* Getsthe file contained in the object
* @return Thefile contained in the object

*/
public File getFile()
{
return file;
}
/**

* Getsthe parsed file contained in the object
* @return Thefile parsed contained in the object

184

* inan array of String

*/
public String[] getParsedFile()
{

return parsedFile;

public void startElement(String namespaceURI,
String IName, // local name
String gName, // qualified name
Attributes attrs)

throws SAXException

{

indentLevel++;
String eName = IName; // element name
if ("".equals(eName)) eName = gName; // namespaceAware = false

// meansthat there are some security tags
if(eName.equals(" Security")) secElementsiFound =true;

if (secElementsFound)

{

boolean foundSecElement = fileTags.checkElement(secCategory, eName, "YESIT IS")

if (attrs!=null)
for (inti =0; i < attrs.getLength(); i++)
{ String aName = attrs.getl ocaName(i); // Attr name
if ("".equas(aName)) aName = attrs.getQName(i);
fileTags.checkAttribute(secCategory, eName, aName, attrs.getVaue(i)) ;
}
} /1if attrsl=null

if (attrs.getLength() > 0) nl();

} /] startElement

public void endElement(String namespaceURI,
185

String sName, // simple name
String gName // qualified name

)
throws SAXException
{

if((gName.equa s(" Security"))) secElementsFound = false ;

indentLevel--;

}

/ KA AKRIAKR K AR IR I AR IR I AR IR I A A IR I d A h A hhhhhkhxdhhkdxdhhdxdrxhrxhxhkx

public void characters(char buf[], int offset, int len)
throws SAXException
{

String s= new String(buf, offset, len);

if (!strim().equas("")) emit(s);

I Wrap 1/O exceptionsin SAX exceptions, to
/I suit handler signature requirements

private void emit(String s)

throws SAXException

{

}

/] Start anew line

// and indent the next line appropriately
private void nl()

throws SAXException

String lineEnd = System.getProperty("line.separator");
try {
out.write(lineEnd);
for (inti=0; i < indentLevd; i++) out.write(indentString);
} catch (IOException €) {
throw new SAXException("l/O error", €);
}
}
}

186

/*

Khhkkhkkkkkhkhkhhhhhhhhkhhhdk khdhhhrhrrxkx

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
khkhkkhkkhkhkhkkkkkhkkhkkhkkhkhkhkhhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhdhh khhhhhhhhdhdhhhdhhhhhdk

*/

packagedbsection;

import dbsection.* ;

import java.io.*;

ID",

import java.io.Writer ;

#*
* The classFileTagsisresponsibleto

* create an object containing al the security
* elements and attributes of the specificfile

* that belongs
* @author Panos
*/
public class FileTags
{
/I DataMembers
String filename ;
String[] secElement ={ "CIA-IUOQ" , "CLASSGUIDE",
"COMSEC" , "COUNTRY-
"NONUS-SEC","NOFORN"
b
String[] secElementValue={ "empty" , "empty" , "empty",
"a’npty"’
"empty” ,
"empty”} ;
String[] secAttribute ={"classification" , "nonUSmarkings' ,
"SClcontrols’
"FGlsourceOpen” ,
"FGlsourceProtected” ,
"disseminationControls" ,
"releasableTo" ,
"nonlCmarkings' } ;
String[] secAttributeVaue={ "empty" , "empty" , "empty" ,

187

"empty" , "empty"
"empty”
“empty” ,
"empty" } ;

Filefile;
/**

* The default constructor of the class

* receivesthe passed File object and initiaizes
* the parameter for itsalf

* @param newFile The File object on which that FileTags

* object isreferred to
*/

public FileTags(File newFile)
{
file= newFile;
}
/**

* Setsthe name of thefile

* @param newlileName The new filename
* @return void

*/
private void setFileName(String newFileName)
{
filename = newFileName;
}
/**

* Getsfile's security attributes contained in the object

* @return Thefile's security attributes contained in the object
*/

public String[] getSecAttributes()
{

return secAttribute ;

/**

* Getsfile's security attributes val ues contained in the object

* @return Thefile's security attributes values contained in the object
*/

public String[] getSecAttributeValues()
{

return secAttributeValue;

/**

* Checksthe passed element if itisa
* security element

* @param category The element's category
188

* @param newElement The element to b echecked
* @param newElementVaue The element'svalue
* @return A boolean trueif the element is asecurity element
*/
public boolean checkElement(String category,
String newElement
String newElementValue)

boolean hasSecElements=false;

/I check all the security elementsto find if thenewTag
[l isasecurity element

for (inti=0; i< secElement.length ; i++)
{
if (secElement][i].equals(newElement))

secElementValue[i]= newElementVaue;
hasSecElements = true;

}

return hasSecElements;

/* *

* Checksthe passed attributeif itisa

* security attribute

* @param category The attribute's category

* @param newElement The element containing the attribute

* @param newAttribute The attribute to be checked

* @param newAttributeVaue The attribute's value

* @return void

*/

public void checkAttribute(String category,

String newElement ,
String newAttribute,
String newAttributeValue)

boolean hasSecAttributes=fase;

/I check all the security attributesto find if the newAttribute
Il isasecurity el ement
for (int i=0; i< secAttribute.length ; i++)
{
if (secAttribute[i].equals(newAttribute))
{

secAttributeVauei]= newAttributeVaue ;
hasSecAttributes = true;

i=(secAttributelength - 1) ;

189

} /I FileTagsclassendshere

190

/*

Khhkkkkkkhkhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhd dhdhhhhhhhhhhhhrrrr

* Mader Thesis Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date December 2002
dhhkhkhkkhkhkkhkhkhhkhkhhkhkhkhkhkhhhhhkhhhhhhhhhkhhhhhhhhhdh khhkhkdhhhkhhhkkhhhkdhhhkhkhhhkkhhhkkhhhkhikx

*/

packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.net.* ;

import java.util.* ;

import javax.activation.* ;

import dbsection.* ;

#*

* TheFindUrl class defines aservlet that isresponsible to connect
* the system with the requested server, to retrieve the

* redlesable files from that server and to decide which

* of those filesthe user is allowed to access

*/

public class FindUrl extends HttpServlet implements Seridizable

{

// DataMembers
private UserBean

user;

private PrintWriter out ;
private HitpServletRequest req;
private HttpServletResponseres;

private StringselUrl;

private String selectedUrl="nothingY et" ;
private String permission="noneYet" ;
private String authentication="noneYet" ;

private static FileTagsfileTags;
private static SecMetadataM anager managey ;
private boolean decision=false;

private Filefile;

I/ thisServer iskind of thelogin name of the server
private String thisServer = "http://localhost:8080" ;
private String thisServerPassword = "password" ;
private Vector serverFoundFiles;

191

private Vector matchedFiles;

private String npsServer = "http://131.120.8.193:8080/metadata/serviet/"
private String local Server = "http://localhost:8080/metadata/serviet/” ;
private String server ;
private String RegFilename;;
/**

* Processing user's GET request by simply passing

* the control to the doPost.

* @param request Theclient'srequest.

* @param response The response to the client.

* @return void.

* @exception ServietException In case of aservlet error encountered

* @exception |OEXception In case of al/O error encountered

*/
public void doGet(Http ServietRequest request, HttpServletResponse response)

throws ServletException, |OException

this.doPost(request, response);
return;
} // end of doGet

/**

* Processing user's POST request.

* @param req the client request.

* @param resthe responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception |OEXception In case of al/O error encountered

*/

public void doPost(HttpServlietRequest req, HitpServletResponse res)
throws |OException

/I Initialization
thisreq =req;
thisres=res;
serverFoundFiles = new Vector() ;

/I get the session object from the previous servlet
HttpSession session = req.getSession(true);

I/ get now the UserBean object from the session
user = (UserBean) session.getAttribute("user");

/I Get the user sdlections/ server and filename

server = reg.getParameter("server”) ;
selectedUrl = req.getParameter("fileUrl™);

192

[/l "nothing" means that the request is coming from the other server
if (selectedUrl.equal s('nothing™))

/I checksthe authentication if it was succesfull

authentication = reg.getParameter("permission”) ;

RegFilename = reg.getParameter(“filename") ;
}

/I Setsthe content typeto html text
res.setContentType("'text/html");

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

/IGeneratesthetitle
out.printin("<html><head><title>");
out.printin("Find the requested (URL) file servlet");
out.println("</title></head>");

//Generatesthe body
out.printin("<body bgcolor=\"#fafca3\">");

/I Print the Personal and the security data
printData();

/I connection established the availabl e files presented
if (authentication.equal S("approved"))

out.println(* Thetotal availablefileson the server " + server + "
\n");
for (int i=0; i<user.getAvaFiles().siz&() ; i++)

{
out.printin(****x**kxxx " + ger getAvaFiles().elementAt(i) + "
\n");

Il find those files that have a matching filename
matchedFiles = new Vector() ;
matchedFiles = checkIfExist(RegFilename);

user.setAvaFiles(matchedFiles) ;

String fileClass;
String file;
out.printin(" Filescontaining" + RegFilename + " /// user'sclassificationis="+
user.getServiceClass()+ "
\n");
for (int i=0; i<matchedFiles.size() ; i++)

file = (String) matchedFiles.elementAt(i) ;
fileClass= file.substring(0,2);

193

/I find the releasabl e files according to user's classification
if (fileClass.equals(user.getServiceClasy()))

out.printin(* -------- " + matchedFiles.elementAt(i) + " ---- fileclass=" +
fileClasst+ "
\n");

String flag = "server” ;
out.printin("<ahref="" + res.encodeURL ("Op enFile?sel File=" + flag)
+"'>" +" continue to open thefile you want "+
llll + ll
\nll);

}

/linitia stage. Trying to connect
if(!selectedUrl .equals("nothing™))
{

System.out.printin(* insideinsideinitial Stage, server="+server);
System.out.printin(" insideinsideinitial Stage , selectedUrl =" + selectedUrl);

if(server.equals("NPS")) server=npsServer ;
if(server.equals("LOCAL")) server=local Server ;
if(server.equas("OTHER")) server=sdlectedUrl ;

System.out.printin(" insdeinside initial Stage, after if server=" +server);

getConnected(server) ;
}

exitLinks(); /I Create and print thelinksto other serviets

out.printin(</body></html>");
}// doPost ends here

/**

* Starts anew connection with the associated server

* @param server The associated server to be connected
* @return void.

* @exception Exception.

*/
private void getConnected(String server)
{
try
{

HttpSession session = req.getSession(true);
if(!session.isNew())

/I Ensure the session is newly crested
session.invalidate();
session = req.getSession(true);

194

}

/I Attach customer bean to this session object
session.setAttribute("user”, user);

res.sendRedirect(res.encodeRedirectURL (server
+ "dbsection.ServerL ogin?server| D="
+ thisServer + "& password="
+ thisServerPassword + " & filename="
+ selectedUrl + " & server=" + server))

}
catch (Exceptione)

{ // openConnection() failed
System.out.printin(" 10Exception "+e);

}

/**

* Startsanew session after acustomer is correctly authenticated.
* @return void.

* @exception Exception.

*/

private void startSession() throws Exception

{

/I Thenext servletiscalled
Il Get the dispatcher
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(server
+ "dbsection.ServerLogin?server| D="

+ thisServer + "' & password="
+ thisServerPassword + "& filename="
+ selectedUrl + "& server=" + server);

if (dispatcher == null)

/I No dispatcher means the given file could not be found
/I response.sendError(response.SC_NO_CONTENT);
}

else

Il Get or start anew session for thisuser
HttpSession session = req.getSession(true);
if (!session.isNew())

I/ Ensurethe session is newly created
session.invalidate();

195

session = req.getSession(true);

/I Attach customer bean to this session object
session.setAttribute(" user”, user);

// Pass control to adifferent page
dispatcher.forward(reqg, res);
}

} // end of startSession()

//*** *kkkkk
/**
* Checksthe passed filenameif exist within the name of thefiles
* @return A Vector containing the found files.
* @exception Exception.
*/

private Vector checkIfExist(String fileName)
{
String possibleFile;
String testStr;
Vector matchingFiles = new Vector() ;
int widthS = fileName.length() ;

Enumeration enum = user.getAvaFiles().dements() ;
/I check every element of the serverFoundFiles Vector
while(enum.hasM oreElements())
{
possibleFile = (String) enum.nextElement();
int widthB = possibleFilelength() ;

for(int i=0; i<widthB-widthS; i++)

{
testStr = possibleFile.substring(i, i+widthS) ;
if (testStr.equa s(fileName))

{

// found

matchingFiles.add(possibleFile);
Il storethefile
i=widthB-widthS ;
/I stop the loop
}

} /[for loop // searching the possibleFile
} /l whileloop // searching the elements of the Vector

/I add at the end of the V ector the name of the server
196

/' who holdsthosefiles
matchingFiles.add(server) ;

return matchingFiles;

}
private void exitLinks()

out.println("

\n");

out.printin("<ahref=" + res.encodeURL ("/metadata/lhtml/login.htm")
+"'>" +"|ogin again asanother user "+ "" +" or "+
"<pr>\n");
out.printin("<ahref="" + res.encodeURL ("UserOptions")
+"'>" +" seeagain your options'+ "" + "
\n");

/**
* Prints the user's persona and Security data
* retrieved from the database that contained
* inthe UserBean object
* @returnvoid.
*/
private void printData()
{
out.printin("<h3>" +" Persona Data" +"</h3>");
out.printin("Last Name :" + " & nbsp " +
user.getL astName() + "
\n" +
"First Name:" +" & nbsp " +
user.getFirstName() + "
\n");

out.printin("" + " Security Attributes (presented here only for
demo)” + "
\n");

out.printin(" ServiceName :" +" " +
user.getServiceName() + "
\n" +
" Service Position:" +" " +
user.getServicePos() + "
\n" +
" Service Classification:" + " & nbsp;& nbsp "+
user.getServiceClasy() + "
\n" +
" Country ID:" + " & nbsp " +
user.getCountryld() +"
\n"

}// FindUrl class ends here

197

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

package dbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.* ;

import javax.activation.* ;
import java.awt.* ;

import java.* ;

/**

* The ImportFile class defines aservlet that isresponsible to
* create aweb pageto help user input the file and the server
* wherethat fileislocated in order to openit.

*/
public class ImportFile extends HttpServiet
{
// DataMembers
private UserBean freshuser ;
private Vector avaFiles;
private PrintWriter out ;
private HttpServletRequest req;
private HttpServletResponse res,
/**

* Processing user's POST request.

* @param req the client request.

* @param restheresponseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception | OException In case of al/O error encountered

*/

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws |OException

/I Initialization

this.req = req;
thisres=res;

198

/1 get the session object from the previous servlet
HttpSession session = req.getSession(true);

/1 get now the UserBean object from the session
freshuser = (UserBean) session.getAttribute("user");

/I Get the user selection from the request
String FileMenu = req.getParameter("FileMenu™);

/I Setsthe content type to html text
res.setContent Type("text/html");

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

lIGeneratesthetitle
out.println("<html><head><title>");
out.printin("Import File Selection™);
out.printin("</title></head>");

/1Generates the body
out.printin("<body bgcolor=\"#fafcad\">");

/I Printsthe personal and the security data
printData();

I thisform getsthe url
out.printin("<form action="FindUrl' method="POST" >");

/I creates the text box and the submit button
inputUrl();

out.println("</form>");

I/ Create and print thelinksto other servlets
exitLinks();

out.printin("</body></html>");

}// doGet ends here

/**
* Displaysthe available linksto direct control
* in another servlet, in case the user
* wantsto cancel this procedure
* @return void.
*/
privatevoid exitLinks()
{
out.printin("<ahref="" + res.encodeURL ("/metadata/html/login.htm")
+"'>" +"|ogin again asanother user "+ "" +" or "+ "
\n");

199

out.printin("<ahref="" + res.encodeURL ("UserOptions")
+'"'>" +" seeagain your options'+ "" + "
\n");

/**
* Createsthe necessary radio buttonsfor the
* server's selection, thetext field to get the
* file and the buttons
* to clear thefield or to submit the filename
* @return void.
*/

privatevoid inputUrl ()

{

String fileUrl="NOT_SELECTED" ;

out.printin(* Choose the server to find the file
\n");
out.printin(" <input type=radio’' name="server' value='NPS checked > NPS ");
out.printin(" <input type=radio' name="server' value='LOCAL'>LOCAL "),
out.printin(" <input type="radio’' name="server' value='"OTHER' > OTHER ");
out.printin(" and then givethefilename or just aword" +

" contained in thefilename
\n");

out.printin(" <p> <input type="text' size='40' name="ileUrl" >");

out.printin(* <input type='submit’ vaue="Submit' name="B1> ");

out.printin(" <input type="reset' vaue='Reset’ name='B2'></p> ");
}

/**

* Prints the user's personal and Security data
* retrieved from the database that contained
* in the UserBean object
* @returnvoid.
*/

privatevoid printData()

gut.printl n("<h3>" +" Persona Data" +"</h3>");
out.printin("Last Name :" + " & nbsp " +
freshuser.getl astName() + "
\n" +
"First Name:" +" & nbsp " +
freshuser.getFirstName() + "
\n");

out.println("" + " Security Attributes (presented here only for demo)"
+ "
\n");

out.printin(" ServiceName :" +" "

+ freshuser.getServiceName() + "
\n"

+" Service Position:" + " & nbsp;& nbsp "

+ freshuser.getServicePos() + "
\n"

+" Service Classification;" + " & nbsp "+

200

freshuser.getServiceClass() + "
\n"

+

" Country ID:" + " & nbsp "
+

freshuser.getCountryld() + "
\n"
);

}// ImportFile class ends here

201

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Madter Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkkhkhkhkkhkhkhhkhhkhkhhhkhhkdkhkhkhhhkhhhhhhhkdhhhkhhhhhhhhkhhkhhhhhhdhhkhhkdhhkhhhhhhdhkdkkkxxkx

*/

packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.* ;

import java.awt.* ;

#*
* The ImportToSave class defines a servlet that isresponsible to

* create aweb pageto help user input the fileto be saved,
* aswell as some information related to thefile

*

*/
public class ImportToSave extends HttpServlet implements Serializable
{
[[****%%* DataMembers
private UserBean sessionuser ;
private Vector avaFiles;
private PrintWriter out;
private HttpServletRequest req;
private HttpServlietResponse res;
private String[] classfi ={"TS","SE","CL" ,"UN"};
private String([] countries={"ALL", "NOFORN", "NATO", "GRE",
"FRA","RUS" } ;
/**

* Processing user's GET request by simply passing
* the control to the doPost.
* @param request The client's request.
* @param response The response to the client.
* @return void.
* @exception ServletException In case of aservlet error encountered
* @exception |OEXception In case of al/O error encountered
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, | OException
{

202

/I Simply pass pass control to doPost()
this.doPost(request, response);
return;

} // end of doGet

/**

* Processing user's POST request.

* @param req the client request.

* @param res the response to client.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception | OException In case of al/O error encountered

*/

public void doPost(HttpServietRequest req, HitpServletResponse res)

throws ServletException,| OException

{

/I Initialization
this.req = req;
thisres=res;

I g et the session object from the previous serviet
HttpSession session = req.getSession(true);

I get now the UserBean object from the session
sessionuser = (UserBean) session.getAttribute("user);

/I Setsthe content type to html text
res.setContent Type("text/html™);

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

/IGeneratesthetitle
out.printin("<html><head><title>");
out.printin("Create new XML file");
out.printin("</title></head>");

/IGeneratesthe body
out.printIn("<body bgcolor=\"#fafcald\">");

out.printIn("<FORM ACTION='SaveFile method="POST"
ENCTY PE="multipart/form-datal > ");

/I Print the Personal and the security data
printStandardM etadata();

Il input/browse the file from the user
inputFile() ;

/I Create and print thelinksto other servlets
203

exitLinks();

out.printIn("</FORM>");
out.println(*</body></html>");

}// doGet ends here
/* *

* Displaysthe availablelinksto direct control
* inanother servlet, in case the user

* wantsto cancel this procedure

* @return void.

*/
privatevoid exitLinks()
out.printin("<ahref=" + res.encodeURL ("/metadata/html/login.htm")
+"'>" + "|ogin again as another user "+ "" +" or "+
"<pr>\n");
out.printin("<ahref="" + res.encodeURL ("UserOptions")
+"'>" +" seeagain your options'+ "" + "
\n");
}
/**

* Creates the necessary text field to help

* the user to input the file and the buttons

* to clear the field or to submit the filename

* @return void.

*/
private void inputFile()
{
out.printIn("Enter the file below:
");
out.printin("<INPUT TYPE=file¢ NAME=fileName' >");
out.printin(*<INPUT TY PE="submit' VALUE="Upload fileto the server' >");
out.printin(*<INPUT TY PE="reset' VALUE="Clear field' >" + "
\n");

}

/**

* Printsthe user's personal and security data
* that will appended to the file asits metadata.
*

* @returnvoid.
*/
privatevoid printStandardM etadata()
{
DatenewDate = new java.util.Date() ;
/I create the table with the standard data
out.printin(" <div align="center'> <center> <table border="2' width="90%">");
[l fill in the rows with the known data
tableRow("CLASSIFIED BY"," " ,"DATE", newDate.toString());

204

tableRow('Last Name ", sessionuser.getl astName()

sessionuser.getFirstName())

"First Name ",
tabl eRow("User’Service", sessionuser.getServiceName() ,
"Position in Service " ,sessionuser.getServicePos())

tableRow("User Classification ",sessionuser.getServiceClass() ,
"User Country ID ", sessionuser.getCountryld());

tableRow("File Classification ", dropDownClass(

sessionuser.getServiceClasy())

"Release to Countries’, dropDownCountry/(

sessionuser.getCountryld()));

you'"
below" +" </p>"

}

/**

tableRow("For Official UseOnly ",
"<INPUT TYPE="radioc’' NAME=FOUOQ' vdue='yes CHECKED >yes'

"<INPUT TYPE="radio’ NAME="FOUQ' value='no">no" ,
"For Internal UseOnly ",
"<INPUT TYPE=radio' NAME="FIUQO' vdu e='yes CHECKED >yes" +
"<INPUT TYPE="radioc' NAME="FIUQO' value="no">no");
out.printin(* </table> </center> </div>");
out.printin("<p aign="center>" + "Before you submit your XML file

+" haveto complete ALL the METADATA fidlds
)

[/ end of printStandardM etadata ™ * * ** * * % x %k k ks k x %

* Thismethod creates the allowed optionsin the drop down list
* for the classification selection of thefile
* @param userClass Theclassification of the user,

*

which will be the maximum alowed for thefile

* @return The alowed classifications for thefile

*/

private String dropDownClass(String userClass)

{

/I convert user's classification to anumber
intlevel =3;

if(userClass.equals("TS")) level =0;
if(userClass.equals("SE")) level =1 ;

if(userClass.equas("CL")) level = 2;

String dropDown =" <SELECT NAME='Class>" ;

for (inti=level; i<4;i++)

{
dropDown = dropDown + "<OPTION VALUE=" + classifi[i] +">" + classifi[i] ;

205

}

dropDown = dropDown + " </SELECT>" ;
returndropDown;

/**
* Thismethod creates the allowed optionsin the drop down list
* for the releasable countries of thefile

* @param userClass The country of the user,
* @return The alowed countries for thefile

*/
private String dropDownCountry(String userCountry)
{
String dropDown =" <SELECT NAME="Countries>" ;
for (int i=0; i<countries.length ;i++)
dropDown = dropDown + "<OPTION VALUE=" + countrieqi] + ">" +
countrieqfi] ;
}
dropDown = dropDown + " </SELECT>" ;
returndropDown;;
}
/**

* Thismethod displays the passed parameters
* in atable row with specific dimensions

* @param firstColumn Thefirst column of therow
* @param secondColumn The second column of the row
* @param thirdColumn Thethird column of the row

* @param fourthColumn The fourth column of the row
* @return void
*/
private void tableRow(String firstColumn , String secondColumn,
String thirdColumn , String forthColumn)

{
out.printin("<tr> <td width="15%">" + fir¢Column +" </td> "
out.printin(" <tdwidth='35%'>" + secondColumn + " </td> ");
outprintin(* <tdwidth="15%">" + thirdColumn +" </td> "),
out.printin(* <td width="35%">" + forthColumn + " <ftd> </tr> "
}

}// ImportToSave classends here

206

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhhhkdhkhhhhkhhkhkhhkhhhhkhhkdhhhhhhhhhkdhkhhhhkkhhkhdhkhkhhhhhkkhkdxkhx

*/

packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.*;

import java.sgl.*;

import dbsection.*;

/**
* The classLogin definesa servlet that isresponsible to authenticate
* userstrying to login. Upon positive authentication,
* anew user session is created with two attached beans: the customer
* bean and the database connection module.
* @author Panos
*/
public class Login extends HttpServiet
{
// Datamembers
privatefina int DRIVER_ERROR = 1,
private final int CONNECTION_ERROR = 2;
privatefina int QUERY_ERROR = 3;
private final int QUERY_ERROR_EXC=5;
privatefina int INVALID_USER = 4;

private HttpServletRequest request;
private HttpServletResponse response;
private Connection connection;
private PrintWriter out;

private ResultSet rs;

private ResultSet r<2;

private DBConnectionBean dbBean;
private String curServiceName ="non";
private String curServicePos ="non" ;
private String curServiceClass ="non";
private String curUserCountryld="non";
privateint curUserld =0;

207

private Exception dbe;
private UserBean user ;
private Vector avaFiles;

/**
* Onetimeinitilization of the servlet. If the Connection Moduleis not

* yet initiated, it ensuresits creation.

* @param config local server configuration parameters.

* @return void.

* @exception ServietException In case of aservlet error encountered
*/

public void init(ServletConfig config) throws ServletException

{
super.init(config);
rs=null; /I for the result set

DBConnectionBean dbBean =

(DBConnectionBean)getServletContext().getAttribute(" connectionBean™);
if (dbBean == null)

dbBean = new DBConnectionBean(); // for the connection module
dbBean.setDriver(*sun.jdbc.odbe.JdbcOdbeDriver™);
dbBean.setUrl("jdbc:odbc:UserDB");

dbBean.setUser("panos’);

dbBean.setPassword("greek");

/I Load the driver

if('dbBean.isLoaded())

{
exitPoint(DRIVER_ERROR);

}

}

this.dbBean = dbBean;
getServletContext().setAttribute(connectionBean”, dbBean);

} /1 end of init()

/**
* Processing user's POST request by simply passing
* the control to the doGet.
* @param request Theclient'srequest.
* @param response The responseto theclient.
* @return void.
* @exception ServletException In case of aservlet error encountered
* @exception |OException In case of al/O error encountered
*/
208

public void doPost(HttpServietRequest request, HttpServletResponse response)
throws ServletException, |OException

/I Simply pass pass control to doGet()
this.doGet(request, response);
return;
} // end of doPost
/**
* Processing user's GET request.
* @param request the client request.
* @param response the responseto client.
* @return void.
* @exception ServletException In case of aservlet error encountered
* @exception |OException In case of al/O error encountered
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, |OException

[l Initialization
this.request = request;
this.response = response;

response.setContent Type(“text/html™);
out = response.getWriter();

/I Get the login parameters from the request
String name = request.getParameter("userID");
String password = request.getParameter (" password”);

validateUser(name, password);

} // end of doGet()
/* *

* Authenticates a user with the given username & password

* @param name The user'susername.

* @param password The user's password.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception | OException In case of aservlet error encountered
*/

private void validateUser(String name, String password)

{
I/ query the database
rs = dbBean.query(
"SELECT * " +
"FROM User " +
"WHERE LoginName="' + name+ """ +

209

"AND Password =" + password +""");
try
{

if(rs.next())

/I Successful user login
findNamePos(name, password);

[l initidlizesthe Vector for thefiles
avaFiles=new Vector();

findFiles(curServiceName, curServicePos, curServiceClass,
curUserCountryld);

/I start the session
startSession();

}

else

/I Invaid login data
exitPoint(INVALID_USER);
}

rsclose(); // closethe ResultSet

}

catch(Exception €)

{
exitPoint(QUERY_ERROR_EXC);

}

} /1 end of validateUser()

/**

* Findsthe Security authorizations of avalid user

* @param name Theuser'susername.
* @param password The user's password.
* @return void.
* @exception ServletException In case of aservlet error encountered
* @exception | OException In case of aservlet error encountered
*/
private void findNamePos(String name, String password)

ResultSet rs3=dbBean.query(
"SELECT * " +
"FROM User " +
"WHERE LoginName="+ name+""" +
210

"AND Password =" + password + "");

try
if(rs3.next())
{
curServiceName = rs3.getString(" ServiceName") ;
curServicePos =rs3.getString(" ServicePos') ;
curServiceClass =rs3.getString(" ServiceClass") ;
curUserCountryld =rs3.getString(" Countryld") ;
curUserld = Integer.parsel nt(
rs3.getString("UserlD")) ;
} _
catch(Exception €)
{
exitPoint(QUERY _ERROR_EXC);
doe=e;
}

/**

* Findsthefilesthat are availableto a specific user according
* to higher security authorizations
* @param service Theuser'sservice
* @param position The user'spositionin hisor her service
* @param clearance The user's clearance (Unclassified, Classified etc.)
* @param country The user's country
* @return void.
* @exception ServletException In case of aservlet error encountered
* @exception 10EXception In case of an 1/0 error encountered
*/
privatevoid findFiles(String service, String position,
String clearance, String country)
{

Il retrieve the availabl e files according to the below criteria
ResultSet rsA=dbBean.query/(
"SELECT * " +
"FROM File" +
"WHERE UserServiceName =" + service +" 4
"AND UserServicePos =" + position +""" +
"AND UserServiceClass =" + clearance + """ +
"AND UserCountryld =" + country +"");

try

{ while(rs4.next())
{ avaFiles.add(rs4.getString("File")) ;
}

%atch(Exception e)

211

exitPoint(QUERY_ERROR_EXC);

} Il findFiles
/**
* Starts anew session after auser
* is succefully authenticated.

* @return void
* @exception Exception In case of aninvalid situation is encountered
*/

private void startSession() throws Exception

{

/I Thenext servlet to be called through aRequestDispatcher object

/I Get the dispatcher
RequestDispatcher dispatcher =
getServietContext().getRequestDispatcher("/UserOptions');

if (dispatcher == null)
{

/I No dispatcher meansthe given file could not be found
response.senderror(response.SC_NO_CONTENT);

}

else

{
/] Get or start anew session for thisuser
HttpSession session = request.getSession(true);
if(!session.isNew())

/] Ensurethe sessionis newly created
session.invaidate();
session = request.getSession(true);

}

/I get dl the datafrom the database and create a new User object

user = createUser() ;

/I Close the database connection
dbBean.isClose();

I Attach customer bean to thissession object
session.setAttribute("user”, user);

/I Pass control to adifferent page
dispatcher.forward(request, response);
}

} // end of startSession()
/* *

212

* Creates anew userBean object from the

* information retrieved from the database.

* @return A UserBean object containg all the user'sdataisreturned.
* @exception Exception In the case of aninvalid data

*/

private UserBean createUser() throws Exception
UserBean user = new UserBean();

user.setUserI D(rs.getint("UserID"));
user.setFirstName(rs.getString("Fname™));
user.setMiddlel nitial (rs.getString("Mi"));
user.setl astName(rs.getString("Lname"));
user.setStreet(rs.getString(" Street”));
user.setCity(rs.getString(" City"));
user.setZip(rs.getString("Zip"));
user.setState(rs.getString(" State™));
user.setPhone(rs.getString(" Phone™));
user.setl oginName(rs.getString("'LoginName"));
user.setPassword(rs.getString(" Password"));
user.setEmail (rs.getString("Email"));

user.setServiceName(rs.getString(” ServiceName'));
user.setServicePos(rs.getString(" ServicePos'));
user.setServiceClass(rs.getString(" ServiceClass"));
user.setCountryld(rs.getString(" Countryld"));

user.setAvaFiles(avaFiles) ;

return user;

/**

* Defines severa types of exit conditions

* depending on the specified error

*

* @param exitCondition That integer specifiesthe error causes the exit.
* @return void.

*/

private void exitPoint(int exitCondition)

{
String output = new String();

switch(exitCondition)

{
case CONNECTION_ERROR:
output +="Application error: unable to establish connection to database”;
break;

case QUERY_ERROR:
213

output +="Application error: invalid database query";
break;

cae INVALID_USER:

output +="Invalid username and/or password";
break;

default:
output +="Application error";

} // end switch

OUt.pri ntl n("<body bgco| Or:\"#fafcas\u>n);
out.printin("<H3>Metadata Security Label Tags Authentication Process</H3>");

out.printin("" + "+** ERROR ENCOUNTERED
wax e\,

out.println(output + "
\n");
out.println("Please choose from the following” + "" +
"
\n");

out.printin("<ahref="" +
response.encodeURL ("/metadata/htmi/login.htm")
+"'>"+"Try tologinagain "+ "" +
"
\n");

out.printin("<ahref="" +
response.encodeURL ('/metadata/html/main.htm™)
+">" + "Home page'+ "" + "
\n");
out.printin("<P>\n");
out.printin("</BODY >\n");
out.printin("</HTML>");
} /1 end of exitPoint()

} I/ end of Login class

214

/*

Khhkkkkkkhkhhhhkhhkhhdhhhhhhhhhirixd

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)
* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002

Ahkhkhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhkhhkhhkhhkhkhhkhhkhhkhhkhhhhhhkhkhkhhkkhkkhkkhkkhkhkhixkx
*/
packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.*;

import java.sgl.*;

/**

* Thisclassdefinesaservlet that logout
* auser and end his/her session.

* @author Panos

*/
public class Logout extends HttpServiet

{
/I Datamembers
private final int ERROR_SESSION = 1;
private HttpServletRequest request;
private HttpServletResponse response;
private PrintWriter out;
private ResultSet rs;
private DBConnectionBean dbBean;
private CustomerBean customer;
private String output = new String();

/**

* Processing user's POST request by simply passing

* the control to the doGet.

* @param request The client's re quest.

* @param response The responseto theclient.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception |OException In case of al/O error encountered

*/

public void doPost(HttpServietRequest request, HttpServletResponse response)
throws ServletException, |OException

/I Simply pass pass control to doGet()
this.doGet(request, response);
return;

215

} // end of doPost

/**

* Processing user's GET reguest.

* @param request the client request.

* @param response the responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception |OException In case of al/O error encountered

*/

public void doGet(HttpServietRequest request, HttpServletResponse response)
throws ServletException, |OException

{
/I Startup settings

this.request = request;
this.response = response;

/I Setsthe content type to html text
response.setContent Type(“text /html™);

/I Getsthe PrintWriter object for sending HTML commands
out = response.getWriter();

//Generates the body
out.printIn("<body bgcolor=\"#fafcad\">");

output ="";
processRequest();

} // end of doGet()

/7\'*

* Processing the request for logging the user out
* and terminating the current user session.
* @return void

*/
private void processRequest()
{

/I Terminate the session for this user

HttpSession session = request.getSession(f alse);

if(session !=null)

session.invalidate();
}
out.printin("Thank you for using M etadata Security Label Tags System.”
+"
\n");

exitLinks();

216

} // end of processRequest()
/* *

* Displaysthe availablelinksto d irect control
* in another page, in case the user
* wantsto discontinue the session
* @return void.
*/
private void exitLinks()
{
out.println("

\n");
out.printin("<ahref="" +
response.encodeURL (/metadata/html/main.htm™)

+"'>" + "Home page'+ "" + "
\n");

out.printIn("<ahref=" +
response.encodeURL ("'/metadata/html/login.htm™)

+"'>" +"Login again as another user "+ ""
+ n Or Il+ Il
\nll);

}

} /1 end of Logout class

217

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)
* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002

Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

packagedbsection;
import java.io.*;

import java.io.Writer ;

/**

* The MetaTags class codesthe tags of
* afile asan object

* @author Panos

*/

public classM etaTags

{

String[] parsedFile ;
int index ;
/**

* The default constructor of the class
* initializesthe variables.
*/

public MetaTags()

parsedFile = new String[120] ;
index=0;

}
/**

* Getsthetags of the parsed file
* @return An array of String representing
* thetags of thefile
*/
public String[] getParsedFile()
{

return parsedFile;

/**

* Addsanew tag passed asthe parameter
* @param newString The new tag to be added

218

* @returnvoid

*/
public void add(String newString)
{
index =index +1;
parsedFile]index] = newString ;

219

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhhhkdhkhhhhkhhkhkhhkhhhhkhhkdhhhhhhhhhkdhkhhhhkkhhkhdhkhkhhhhhkkhkdxkhx

*/

packagedbsection;

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.* ;

import java.sgl.*;

/**

* The class OpenFile defines aservlet that isresponsible to
* open any file auser may select either thefileis saved

* |ocally or in another server

* @author Panos

*/

public class OpenFile extends HttpServlet
{

// DataMembers
private UserBean newuser ;

private Vector avaUNFiles;
private Vector avaCLFiles;
private Vector avaSEFiles;
private Vector aval SFiles;

private PrintWriter out ;
private DBConnectionBean dbBean ;

private String[] classification={"UN" ,"CL" "SE" ,"TS" } ;
private String[] date = new String [10] ;

private HttpServletRequest req;
private HttpServletResponse res,

private String selFile;
private String classif;
private String action;
private String otherServer ;

220

private Vector avaFiles;

/**

* Processing user's GET request by simply passing

* the control to the doPost.

* @param request The client's request.

* @param response The response to the client.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception IOException In case of al/O error encountered

*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, |OException

I/ Simply pass pass control to doPost()
this.doPost(request, response);
return;

} // end of doGet

/**
* Processing user's POST request.
* @param request the client request.

* @param response the responseto client.
* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception |OEXception In case of al/O error encountered
*/
public void doPost(HttpServietRequest req, HttpServlet Response res)
throws |OException
{

/I nitialization

this.req = req;
thisres=res;

Il get the session object from the previous servl et
HttpSession session = req.getSession(true);

/I get now the UserBean object from the session
newuser = (UserBean) session.getAttribute("user”);

/I Get the user selection from the request
String FileMenu = req.getParameter("FileMenu'");

/I Setsthe content typeto html text
res.setContentType("text/html");

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

221

/IGeneratesthetitle
out.printin("<html><head><title>");

out.println("</title></head>");

//Generates the body

"<pr>\n");

+sdFile)

Editor "

out.printin("<body bgcolor=\"#fafca’d\">");

/I Print the Personal and the security data
printData();

selFile = req.getParameter("selFil€");
classif = req.getParameter("classification”);
action = req.getParameter("action”);

/I thisisthefirst time passing the serv let
I/l fromthelocal server

if(selFile.equas("start"))

{

[/ Print the avaliable files for the specific user
printAvaFiles();

}

Il thisisthefirst time passing the servlet
/I from another associated server
dseif (sdFileequas('server))

/I Print the avaliable files sent by the other server
printServerAvaFiles);

}

/I thisisthe second time passing the serviet
/I so give the choises how to open thefileson local server
eseif (action.equas(*menu”))

out.printin("
\n" + "Sdlected file: " + selFile + "
\n");
out.printin("1f you want to open the filewith your own XML Editor " +

out.printin("or to saveit for futureuse™);
out.printin("<ahref=""+ res.encodeURL ("/metadata/xml/" + classif +"/"

+">" +" click here"+ "
\n");
action = "startEditor" ;
out.printin("
\n" + "If you want to open the file with an applet -based XML
+"
\n");

out.printin("<ahref="" + res.encodeURL (" OpenFile?classification="

222

seiFile)

or")

+ classif + "&action=" + action + "& selFile="+

+"'>" +" click here" + "
\n");

}

/I thisisthe second time passing the serviet
/I so give the choises how to open the files on the associated server

eseif (action.equas("menuServer"))
{

out.printin("
\n" + "Selected file: " + selFile + "
\n");

out.printin("If you want to open the file with your own XML Editor " + "
\n");
out.printin("or to saveit for futureuse”);

/I get the last element which contains the name of the parent server
otherServer = (String) avaFiles.lastElement() ;

otherServer = otherServer.substring(0, otherServer.length()-8) ;
selFile = selFile.substring(2,selFilelength()) ;

out.printin(" **** server name=" + otherServer +" =clasiff =" + classif);

out.printin(" = and thefilenameis=" + selFile);

out.printin("<ahref="" + res.encodeURL (otherServer + "xml/" + classf +"/" + selFile)
+">" +" click here"+ "
\n");

action = "startEditor" ;

out.printin("
\n" + "If you want to open the file with an applet -based XML Editor "
+"
\n");
out.printin("<ahref="" + res.encodeURL (" Openile?classification="
+ classif +"&action=" + action + "& sl File="+ salFile)
+"'>" +" click here" + "
\n");

}

/I thisisthefinal time passing the servlet
/I which simply initiates the appl et based XML Editor
else

startEditor(classif, selFile) ;
}

Il print the exit options
out.printin("<a href="" + res.encodeURL ("'/metadata/html/login.htm™)
+"'>" +"|ogin again asanother user "+ "
\n" +

out.printin("<ahref="" + res.encodeURL ("UserOptions")

+"'>" +" seeagain your options'+ "" + "
\n");
out.printin("</body></html>");

223

}// doGet ends here
/* *

* Callsthe applet that will inturn

* |oad and initiate the appl et-based XML editor

* @param classLevel Theclassification level of the user that will help
find the directory wherethefileissaved.

* @paramskile The name of thefilethat the editor will open
* @return void.

*/

private void startEditor(String classLevel , String sFile)
{

out.println("<applet codebase=/metadata/applets/ code=MainApplet.class
width=10 height=10>");

out.printin("<PARAM NAME=reqUrl VALUE='
http://loca host:8080/metadata/xmi/"

+classLeved +"/" + sFile+" >");

out.println("</applet>
\n");

/**

* Converts user's classification to a number

* @param classification The classification level of the user

* @return An integer number representing the user's classification
*/

private int getClassL evel (String classification)

{

/I convert user's classification to anumber
intlevel =0;

if(classification.equas("TS")) level =3
if(classification.equals("SE")) level =2;
if(classification.equals("CL")) level =1

return leve ;

/**
* Thismethod gets the available files passed

* from the associated server and present them
* to the user according to hig’her classification
* @return void

*/

privatevoid printServerAvaFiles()

{

out.println(" Click on the links bel ow to open the respectivefile" +"
\n");

/linitialize aVector to get them
avaFiles=new Vector() ;

224

[/ user allowed to seefilesonly up to his’her classification
for (int i=0; i<= getClassLevel (newuser.getServiceClasy()) ; i++)
{

avaFiles = newuser.getAvaFiles() ;

String aFile;
String action = "menuServer" ;

/I get the last element which contains
// the name of the parent server
otherServer = (String) avaFiles.lastElement() ;

out.printin("<hr/>");
out.printin("Filesat " + otherServer + " with classification :"
+ classification[i] + "
\n");

for(int j=0; j<avaFiles.size() - 1; j++)
aFile = (String) avaFiles.elementAt(j) ;
if(getClassLevel(aFile.substring(0,2)) ==1i)
date = findVersion(aFile) ;
out.printin("<ahref="" +

res.encodeURL ("OpenFileclassification="

+ classification[i] +
"&action="+ action

+"&sdlFile="+ aFile) +
">" + date]6] + "");

out.printin("....Version Date: " + date[0] +"/" + date[1]
+"/" +date[2]);
out.printin("....time: " + date[3] + ":" + date[4] +":"
+ date[5] + "
\n");
}

} //j 1oop
} /liloop

[/l insert ahorizontal line
out.printin("<hr/>");

} I printServerAvaFilesendshere

/**
* This method getsthe availablefilesthrough
* the findFiles method and display them

* to the user according to his/her classification
* @return void

225

*/
privatevoid printAvaFiles()

out.printIn("Click on thelinks below to open therespectivefile" +"
\n");

/linitialize aVector to get them

Vector avaFiles= new Vector() ;

/I opens a connection to the database

/ to make the query and retrieve the most
Il updated files

openConnection() ;

/I user allowed to seefilesonly up to his/her classification
for (inti=0; i<= getClassLevel (newuser.getServiceClass()) ; i++)
{

avaFiles = findFiles (newuser.getServiceName() ,
newuser.getServicePos() ,
classfication[i] ,
newuser.getCountryld()) ;

String aFile;
String action="menu" ;
Enumeration enum = avaFiles.dlements();

out.printin("<hr/>");
out.printin("Fileswith classification :" + classification[i] + "
\n");

while(enum.hasMoreElements())

aFile = (String) enum.nextElement();
date = findVersion(aFile) ;

out.printin("<ahref="' +
res.encodeURL (" OpenFile?classification="
+ classification[i] + "&action="
+ action
+"&selFile="+ aFile) +"">" +
date[6] + "");

out.printin("....Version Date: " + date[0] +"/" + date[1] +"/" +
datef2]); , ,

out.printin("....time: " + date{3] +":" + datef4] +":" + date[5] +
"<pr>\n");

} // whileloop ends here

} //'i loop ends here

[/l insert ahorizontal line
out.printin("<hr/>");

226

} /I printAvaFilesendshere
/* *

* This method analyses the filenameto extract
* the date and the time, thefile saved in the system
* which actually representsthe version of thefile.
* @param fullName The complete name of thefile
* @return Anarray of string containing the date and thetime
*/
private String[] findVersion(String fullName)
{

char letter ;
intx=0;
String[] date={"","", ", ™, ", ", "},

for(int i=0; i<fullName.length() ; i++)
{
letter = fullName.charAt(i) ;

if (letter 1="~") date]x] = date[x] + fullName.substring(i, i+1) ;
dseif (letter =="~") x++;

}

return date;

/**

* Findsthefilesthat are available

* to aspecific user according to his security

* authorizations

* @param service Theuser'sservice

* @param position The user'spositionin hisor her service

* @param clearance The user's clearance (Unclassified, Classified etc.)
* @param country The user's country

* @exception Exception In case of aerror encountered

* @return void.

*/

private Vector findFiles(String service, String position,

String
clearance, String country)

Vector avFiles= new Vector() ;

Il retrieve the availablefiles according to the below criteria
ResultSet rs=dbBean.query(
"SELECT * " +
"FROM File" +
"WHERE UserServiceName ="' + service +" 4
"AND UserServicePos =" + position +"" +

227

"AND UserServiceClass =" + clearance + """ +
"AND UserCountryld ="'+ country +"");

try
{
while(rs.next())
{
avFiles.add(rs.getString("File")) ;
}
}
catch(Exception €)

out.printin(" The system could not process your request ");
out.printin(" dueto an exception occured. Pleasetry again" + "
\n");

out.printin("<ahref="" + res.encodeURL ("UserOptions")
+"'>" +"Go back to your options'+ "" + "
\n");

}
return avFiles;

} Il findFiles

* Opens aconnection with the database to retrieve
* thefilesthat are availableto the user
* @return void

private void openConnection()

{
dbBean =
(DBConnectionBean)getServletContext().getAttribute(" connectionBean™);
if (dbBean == null)
{

dbBean = new DBConnectionBean(); // for the connection module
dbBean.setDriver("sun.jdbc.odbe.JdbcOdbeDriver”);

dbBean.setUrl ("jdbc:odbc:UserDB");

dbBean.setUser("panos’);

dbBean.setPassword("greek");

// Load the driver
if(!dbBean.isLoaded())

out.printin(" The system could not process your request ");
out.printin(" dueto an error to the Database Driver."
+" Pleasetry again" +"
\n"

228

out.printin("<ahref="" + res.encodeURL ("UserOptions")
+"'>" +"Go back to your options'+ "" + "
\n");
}

}

this.dbBean = dbBean;

getServietContext().setAttribute(* connectionBean", dobBean);
}

/**

* Prints the user's personal and Security data
* retrieved from the database that contained
* inthe UserBean object
* @returnvoid.
*/
privatevoid printData()
{ out.println(*<h3>" +" Personal Data" + "</h3>");
out.printin("Last Name :" + " & nbsp " +
newuser.getlastName() + "
\n" +
"First Name:" +" & nbsp " +
newuser.getFirstName() + "
\n");

out.printin("" + " Security Attributes (presented here only for demo)” +
"
\n");

+

out.printin(" ServiceName :" + " & nbsp " +
newuser.getServiceName() + "
\n" +
" Service Position:" + "& nbsp;& nbsp "
newuser.getServicePos() + "
\n" +
" Service Classification:" + " & nbsp; "+
newuser.getServiceClass() +"
\n" +
" Country ID:" + " & hbsp " +
newuser.getCountryld() + "
\n")
}

}// OpenFile class ends here

229

/*

Khhkkkkhkhkhhkhkkhhhhhhhkhhhiris

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkkhkhkhkkhkhhkhhkhkhkhhkhkhhhhhkhkdhhkhhhhhkhhhhkhhhhhkhhhhkhhhkhhkhhhhkhhhkkhhkhhhhkhhhkkhkhkhhkxk

*/

packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.net.* ;

import java.util.* ;

import javax.activation.* ;
import dbsection.* ;

/**

* The SaveFile classisresponsible to upload thefile
* from the user's machine to atemporary area of the system
* and to check and parsethefile

*

*
/
public class SaveFile extends HttpServlet implements Seridizable
{
// DataMembers
private UserBean user;

private HttpServletRequest req;
private HttpServlietResponse res;

private String uploaded;

private File sdlectedFile;

private File file;
private PrintWriter out ;

private int MAXIMUM_FILE LINES=300;

private boolean decison=false;
private String desiredClass=null ;
private String desiredCountry = null ;
private String fouo=null ;
private String fiuo=null ;

private String tempFile;

private String filename;

private String ending ;

private String errorState ;

230

private String[] fileSecAttr ;

static FileTags fileTags;
satic SecMetadataManager manager ;

/**

* Processing user's POST request.

* @param request The client request.

* @param response The responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception | OException In case of al/O error encountered

*/

public void doPost(HttpServletRequest req, HitpServletRespon se res)
throws | OException

/I nitialization

this.req =req;
this.res=res,

/I get the session object from the previous servlet
HttpSession session = req.getSession(true);

/I get now the UserBean object from the session
user = (UserBean) session.getAttribute("user");

/I Setsthe content typeto html text
res.setContentType("text/html");

I/ Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

/IGeneratesthetitle
out.printin("<html><head><title>");

out.printin("Get the User's Fileto Saveit --- servlet");
out.println("</title></head>");

/IGenerates the body
out.printin("<body bgcolor=\"#fafcad\">");

/I Print the Personal and the security data
printData();

erorState="";

try

{

(o109 o) 11111 o " +"
\n");
out.printn(* Uploading fileto the server side............ " +"
\n");

uploaded = uploadFile() ;

231

catch (IOException €)

/I goback in casethefileisNOT an XML
errorGoBack("COULD NOT BE UPLOADED DUE TO A COMMUNICATION
PROBLEM ");

I1'f everything wasfine
if(errorState.equal ("))

out.printin(* Filewas successfully uploaded” + "
\n");
(o109 o) 1111 o " +"
\n");
out.println(* Parsing thefile ... " +"
\n");
checkingFile(uploaded) ;
}

/I Create and print thelinksto other servlets
exitLinks();

out.printin("</body></html>");
}// doPost ends here

/**

* Uploadsthefileto atemporary position
* for further processing
* @return |f everything was done successfully
* returnsthe name of the temporary file
* @exception |OException In case acommunication exception isthrown
*/
private String uploadFile() throws | OException
{
/I this Reader getsthe file from the request
BufferedReader buf Reader = req.getReader();
String str=null ;

I/ thosethree lines are used to specify the correct

I user directory becauseit isdifferent in every server

String userDir=System.getProperty("user.dir") ;

int len = userDir.length() ;

if(userDir.substring(len-3 ,len).equal s("bin"))
System.setProperty(“user.dir" , "C:\\jakartatomcat-4.1") ;

/I savethefileinthat temporary addressin the server side
tempFile = System.getProperty("user.dir")

+ File.separatorChar + "webapps'

+ File.separatorChar + "metadata’

+ File.separatorChar + "xml"

+ File.separatorChar + "temporary”

+ File.separatorChar + user.getUserID()

+'temp-1xml";

232

File outFile = new File(tempFile) ;
FileOutputStream outFileStream = new

FileOutputStream(outFile) ;

PrintWriter outStream = new

PrintWriter(outFileStream) ;

desired classfication

int firstLine=0;
String xmlStartStr ="";
String xmlEndStr =" ;

/I get the parameters from the beginning of the stream
for(int j=0; j<4; j++) desiredClass = bufReader.readLine() ; //

for(int j=0; j<4; j++) desiredCountry = bufReader.readLing() ;

/I relesableto countries

for(int j=0; j<4; j++) fouo = bufReader.readLing() ;

/I For Official Use Only

for(intj=0; j<4; j++) fiuo = bufReader.readLine() ;

I/ For Internal Use Only

str.substring(0,5) ;

/I string containgthe session number
str = bufReader.readLing() ;

/I string containing thefilename
str = bufReader.readLing() ;

/I extract the name of thefile
filename = findFilename(str) ;

if(lerrorState.equals(""))

// go back in casethefilehasNOT an XML file extension
/I or an empty filename
errorGoBack(errorState) ;

/I find the beginning of the document in thefirst 20 lines
for (inti=0; i<20; i++)
{

str = bufReader.readLing() ;

if('strequas(") && strlength()>5) xmiStartStr =

if(xmlStartStr.equal ("<xml"))
{

// thefirst lineisfound
firstLine=i ;
233

i=20; // exittheloop
outStream.printin(str) ; // writethefirstline
} /if ending

} /i loop

[l write the fileto the temporary address

for (int i=firstLine; i<MAXIMUM_FILE_LINES; i++)
{

str = bufReader.readLine() ;

/I trying to detect the end of thefile
if(!str.equals(") && str.length()>10) xmIEndStr =

str.substring(0,10) ;
if(\xmlEndStr.equal §("* ---------- "))
{
outStream.printin(str) ;
}
else
{
i=MAXIMUM_FILE LINES;
}
} /i loop

} // lseendshere
outStream.clos();
return tempFile ;

} Il uploadFile endshere
/**

* This method extracts the name of the filefrom
* incoming stream, and checksif itisavaid XML filename

* @param stringFile The complete name of thefile
* @return The name of thefilefound
*/

private String findFilename(String stringFile)
{

String filename;

int len = stringFile.length() ;
intpos=0;

intflag=0; [/l thisflag is used in some browsers where they

get

I only thefile name and not the

whole path + filename

ending = stringFile.substring((Ien-4) , (len-1)) ;
234

boolean emptyFilename = true;

/I find the filename
for (inti=(len-1); i>0; i--)

if(stringFile.charAt(i) =="") flag=flag+ 1;
if(stringFile.charAt(i) == File.separatorChar || flag == 2)
{
pos=i+1;
i=0;
emptyFilename=fase;
}

}

filename = stringFile.substring(pos, (len-1)) ;
if(*ending.equas("xml")) errorState="ISNOT AN XML FILE";

if(emptyFilename==true)

filename="" ;

}

return filename;

/**
* Defines several types of error conditions
* depending on the specified error
* @param error The error specifies the cause of the problem.
* @return void.
*/
private void errorGoBack(String error)

{
out.printin("" + "*** ERROR ENCOUNTERED *** " +
"
\n");
out.printin(*"THE FILE YOU ENTERED -->" + filename + "
\n");
out.printin(error + "
\n");
out.printin("Please"” +"" + "<ahref=""
+ res.encodeURL (" CreateFile") +"'>"
+" go back and select another file'+ "" + "
\n");

/**
* This method passes the file to the Echo24 class

* which parsesthefile and returns afil etags object
* This object and the userBean object are passed to

235

* the security manager for thedecision.
* @param selFilethe selected file to be parsed
* @return void.
*/
privatevoid checkingFile(String selFile)
{
[linitialize anew Echo24 object
Echo24 echo24 = new Echo24() ;

/I create the FileTagsobject for that specific filename
fileTags = echo24.parseFile(salFile) ;

/lif thefilein not avaid XML file

I then anull fileTags object isreturned
if(fileTags==null)

{

errorGoBack("ISNOT A VALID XML FILE. VALIDATEIT
WITH THE IC SECURITY MARKINGS') ;

}

I thefileis parsed successfully
ese

/I read file's sec attr
fileSecAttr = fileTags.getSecAttributeVaues() ;

out.printin(" File was parsed successfully ! " + "
\n");
OUL.PHNEIN(" oo " +"
\n");
out.printin(* Comparing File's Security MetadataLabels " + "
\n");

[l initialize anew security metadata manager
[for that specific fileand user
manager = new SecMetadataManager(fileTags, user) ;

/I make the comparison through the compareTags method
String status = manager.compareT ags(desiredClass,
desiredCountry, fouo, fiuo) ;

/"normal” case.
if (status.equa s("norma™))
{

out.printin(" The whole processwas successful”);
out.printin("<ahref="' +

res.encodeURL ("UpdateDb?desiredClass=" + desiredClass +
"&filename=" + filename) +"">" +
"Confirm "+ "");
out.printIn("to update the database and save thefileto
theserver");

236

/["upgrade” or "degrade" case.
elseif(status.equals("upgrade") || status.equal (" downgrade"))

/I ask for confirmation
askConfirm(status) ;
}

[thereisaproblem with the labels and
/I the process could not be accomplished
else

out.printin(* **** WARNING *** Thereisaproblem
with thelabels!!!!");

out.printin("

kkkkkhkkhkhkkhhkkhkhhkhhkhhhhhkhhhdhkhhrhhhhhkhdrhhkhhkhkdhkrhxixk

out.printin(" Please validate yOL,lI’ filewiththelC
security metadata’ + "<ahref="" +

res.encodeURL (" CreateFile") +
"'>"+"andtry again "+ "</a&>" + "
\n");

}
} Il elsefileTagsisNOT null

} /I checkingFile method
/* *

* |nthe caseswhere the status found is " upgrade” or "downgrade”
* thismethod displaysthe appropriate message
* @param status The results of the tag's comparison
* @return void.
*/
privatevoid askConfirm(String status)
{
OUL.PHNEINC" oo " +"
\n");
out.printin(" **** WARNING *** Thefilewill be" + status +
g REEEET 4 <pr>\n");
out.printin(" **** Thefileisaready marked as" +
fileSecAttr[0] + "
\n");
out.printn(" **** and you have asked to be saved as" +
desiredClass + "
\n");

OUL.PIINEIN(" oo " +"
\n");
out.printin(* If you agree” + "<ahref=""+

res.encodeURL ("UpdateDb?desiredClass=" + desiredClass +
"&filename=" + filename) +"">" +
" confirm "+ "" +"
\n");

out.printin(" If you want to make achange" + "<ahref="'+
res.encodeURL ("ImportToSave") + "'>"
+" goback "+ "" +"
\n");

237

/**

* Displaysthe availablelinksto direct control
* in another servlet, in casethe user
* wantsto cancel this procedure
* @return void.
*/
privatevoid exitLinks()
{
out.println("

\n");
out.printin("<ahref="" + res.encodeURL ("/metadata/lhtml/login.htm")
+"'>" +"|ogin again as another user "+ "" +
" or"+"
\n");
out.printin("<ahref="" + res.encodeURL ("UserOptions")

+"'>" +" see again your options'+ "" +
"
\n");

/**

* Prints the user's personal and Security data
* retrieved from the database that contained
* in the UserBean object
* @returnvoid.
*/
privatevoid printData()
{
out.println("<h3>" +" Personal Data" + "</h3>");
out.printin("Last Name :" + " & nbsp " +
user.getLastName() + "
\n" +

"First Name:" + " & nbsp " +
user.getFirstName() + "
\n");

out.println("" +" Security Attributes (presented here only for
demo)" + "
\n");

out.printin(" ServiceName :" +" " +
user.getServiceName() + "
\n" +
" Service Position:" + "& nbsp;& nbsp " +
user.getServicePoy() + "</gtrong>
\n" +
" Service Classification:" + " & nbsp;& nbsp "+
user.getServiceClasy() + "
\n" +
" Country ID:" + " & nbsp "
+
user.getCountryld() + "
\n"
);

}// SaveFile classends here

238

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)
* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002

dhhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhhhkdhkhhhhkhhkhkhhkhhhhkhhkdhhhhhhhhhkdhkhhhhkkhhkhdhkhkhhhhhkkhkdxkhx

*/
packagedbsection;

import dosection.FileTags;
/**

* The class SecM etadataM anager is responsible to compare the
* received UserBean and FileTags objects and to produce

* the necessary decision according to the policy

* @author Panos

*/

public class SecM etadataM anager

{
// DataMembers
private FileTags fileTags;
private UserBean userBean;
private boolean approved ;

/**

* The default constructor of the class

* receivesthe passed objectsand initializes

* the variable of the decision asfalse

* @paramtags The FileTags object representing the

* tags of aspecificfile

* @param UserBean The UserBean object which will be compared

*/
public SecMetadataM anager(FileTags tags , UserBean user)
{
fileTags=tags;
userBean=user;
approved =fase;
}
/**

* This method makesthe decision
* @return A boolean variable containing the decision
*
/
public boolean makeDecision()
239

String[] secAttribute =fileTags.getSecAttributes() ;
String[] secAttributeV alue =fileTags.getSecAttributeVaues() ;

if(secAttributeV alue] 0] .equal S(userBean.getServiceClass())) approved=true;
return approved ;

} // makeDecision endshere

/**
* Thismethod comparesthe tags of thefile with those
* of the user, and returnsthe result.
* @return A String that can be upgrade, downgrade or normal
*
/
public String compareT ags(String desiredClass, String desiredCountry
String fouo , String fiuo)
{

String status=null ;
String[] secAttribute =fileTags.getSecAttributes() ;
String[] secAttributeVaue =fileTags.getSecAttributeVaues() ;

int fileLevel = getClassLevel(secAttributeVaue[0]) ;
int userLevel = getClassLevel (userBean.getServiceClasy()) ;
int desiredLevel = getClassLevel(desiredClass) ;

if(fileLevel==desiredLevd & & userLevel<=fileLevel) status="normal" ;
if(fileLevel >desiredLevel) status ="upgrade” ;
if(fileLevel<desiredLevel) status="downgrade" ;

return status;
} I/ compareTags endshere

/**
* This method converts aclassification level to anumber
* to be easiest to compare
* @return An integer representing the classification level
*/

private int getClassL evel (String classification)

{

/I convert user's classification to anumber
intlevel =3;

if(classification.equas("TS'")) level =0;
if(classification.equals("S")) level = 1;
if(classfication.equals("C")) level =2

return leve ;

240

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhhhkdhkhhhhkhhkhkhhkhhhhkhhkdhhhhhhhhhkdhkhhhhkkhhkhdhkhkhhhhhkkhkdxkhx

*/

packagedbsection;

import javax.servlet.*;

import javax.servlet.http.*;
import java.io.*;

import java.util.*;

import java.util.\Vector ;
import java.util.Enumeration ;
import java.sgl.*;

import javalang.* ;

import dbsection.*;

/**

* The class ServerLogin defines aservlet that is responsible to authenticate
* associated serverstrying tologin. Upon positive authentication,

* dl the names of thefilesthat are available to that specific

* server are sent for further processing.

* @author Panos

*/

public class ServerLogin extends HttpServlet

{
// Datamembers
privatefina int DRIVER_ERROR = 1,
private final int CONNECTION_ERROR = 2,
privatefina int QUERY_ERROR = 3;
private fina int QUERY_ERROR_EXC =5;
private final int INVALID_USER = 4;

private HitpServletRequest request;
private HttpServletResponse response;
private Connection connection;
private PrintWriter out;

private ServletOutputStream serverOut ;
private ResultSet rs;

private ResultSet rs2;

private DBConnectionBean dbBean;

241

private String curServiceName ="non";
private String curServicePos ="non" ;
private String curServiceClass ="non";
private String curUserCountryld="non";
privateint curUserld =0;

public Exception dbe;
public UserBean user ;
public Vector avaFiles;
private Enumeration enum ;

private String serverName ;

private String serverPass;

private String filename;

private String server ;

private String[] savedFilename = new String [10] ;

/**

* Processing user's POST request by simply passing

* the control to the doGet.

* @param request The client's request.

* @param response The responseto theclient.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception |OException In case of al/O error encountered

*/

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, |OException

/I Simply pass pass control to doGet()
this.doGet(request, response);
return;

} /1 end of doPost

/**

* Processing user's GET request.

* @param request the client request.

* @param response the responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception |OEXc eption In case of al/O error encountered

*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

Il Initialization
this.request = request;
this.response = response;

/I get the session object from the previous servlet
HttpSession session = request.getSession(true);

242

if(session.isNew()) System.out.println("%%%6%6%%%%%%%%%% the session is
neww ");

user = new UserBean() ;

/1 get now the UserBean object from the session
user = (UserBean) session.getAttribute("user");

response.setContent Type("text/html™);

/I Get the login parameters from the request
serverName = request.getParameter("serverlD");
serverPass = request.getParameter(password");
filename = request.getParameter("filename");
server = request.getParameter ("server”) ;

[/ validate the server according to the username/passw
validateServer(server, serverPass) ;

} // end of doGet()

/**

* Authenticates aserver with the given username & password
* @param name The server'susername.

* @param pass The server's password.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception |OException In case of aservlet error encountered

*/
privatevoid validateServer (String name, String pass)
{
String permission ="approved" ; /lvalid server
String fileUrl = "nothing” ; I/l asaflagin the next

serviet
Vector foundFiles = new Vector(20) ;
avaFiles = new Vector();
try

[/ thevdlidation is done through the if/el se condition
/It can also be donewith aquery to the database

if (name.equals(*"http://localhost:8080/metadatal/serviet/"
)) avaFiles=findFiles("CIA");

eseif (name.equag("http://131.120.8.193:8080/metadata/serviet/"))
avaFiles = findFiles("NPS");

dse avaFiles=findFiles("CIA"); I/ permission="denied" ;
response.sendRedirect(name + " dbsection.FindUrl 2permission="
+ permission +
"&fileUrl=" +fileUrl
243

+ "&filename="

+ filename
+"&server=" + server);

} .

catch(Exception €)

{

}

} I/ validateServer
/**

* This method analyses the filenameto extract
* the date and the time, thefile saved in the system
* which actually representsthe version of thefile.
* @param fullName The complete name of thefile
* @return Anarray of string containing the date and thetime
*/
private String[] findVersion(String fullName)
{

char letter ;
intx=0;
String[] date={"","", ", ", """, ""};

for(int i=0; i<fullName.length() ; i++)

{
letter = fullName.charAt(i) ;

if (letter 1="~")
date[x] = date]x] + fullName.substring(i, i+1) ;
dseif (letter =="'~") x++;
}

returndate;

/**
* Finds all thefilesthat are releasable
* to that specific server according to the
* security authorizations contained in the database
* @param serverCode The code of this server that recognized by the system
* @return A Vector containing the rel easablefiles
* @exception Exception If an error found during the process
*/
private Vector findFiles(String serverCode)
{

244

openConnection() ;

Il retrieve the availablefiles according to the below criteria

ResultSet rs4=dbBean.query(

"SELECT * " +

"FROM File" +

"WHERE " + serverCode+" =" +"Yes" Y
try
{

while(rs4.next())
{

avaFiles.add(rsA.getString("UserServiceClass') +
}

}
catch(Exception €)

rsd.getString("File")) ;

avaFiles=null ;

}

return avaFiles;

} Il findFiles
/**

* Opens a connection with the database to retrieve

* the availablefiles of thisuser
*

* @return void

*/
private void openConnection()
{
dbBean =
(DBConnectionBean)getServletContext().getAttribute(" connectionBean');
if (dbBean == null)

dbBean = new DBConnectionBean(); // for the connection module
dbBean.setDriver("sun.jdbc.odbe.JdbcOdbeDriver);

dbBean.setUrl ("jdbc:odbc:UserDB");

dbBean.setUser("panos');

dbBean.setPassword("greek™);

/I Load the driver
if('dbBean.isLoaded())

System.out. printIn("#HHR#H#HHER###HHE Ariver error #HHHERHIHIR =")

}
245

}
this.dbBean = dbBean;

getServietContext().setAttribute(connectionBean", doBean);
}

} // end of ServerLogin class

246

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Master Theds : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
dhhkhkhkkhkhkhkhkkhkhkkhhhkdhkhhhhkhhkhhhkhkhhhhhkdhhhhhhkhhkhkhhkhkhhhkdhhkhhhhhkhhhdhhhkkhhkhkkhhkhkhhkx %

*/

packagedbsection;

import javax.serviet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.* ;

#*

* The UpdateDb class gets an already parsed file,

* updates the database and savesthefile

* inthe"secure" server area.
*

*/

public class UpdateDb extends HttpServlet
{

/I DataMembers

private UserBean nNewuser ;
private PrintWriter out ;

private HttpServletRequest req;

private HitpServletResponseres;

private int fieldld;

private String desiredClass;

private String tempFile;

private String filename;

private String finalFilename;

private DBConnectionBean dbBean;

/**

* Processing user's GET request by simply passing

* the control to the doPost.

* @param request The client request.

* @param response The responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception |OException In case of al/O error encountered

*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
247

throws ServletException, |OEXxception

/I Simply pass pass control to doPost()
this.doPost(request, response);
return;

} // end of doGet

/**

* Processing user's POST request.

* @param request The client request.

* @param response The responseto client.

* @return void.

* @exception ServletException In case of aservlet error encountered

* @exception |OException In case of al/O error encountered

*/

public void doPost(HttpServietRequest req, HttpServletResponse res)
throws |OException

{

/I nitialization

thisreq =req;
thisres=res;

/I get the session object from the previous servilet
HttpSession session = req.getSession(true);

I get now the UserBean object from the session
newuser = (UserBean) session.getAttribute(" user”);

/I Get the user selection from the request
desiredClass = req.getParameter(" desiredClass’);
filename = reg.getParameter("filename");

/I Setsthe content typeto html text
res.setContent Type("text/html");

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

lIGeneratesthetitle
out.println("<html><head><title>");
out.printin("Update DataBase");
out.printin("</title></head>");

//Generates the body
out.printin("<body bgcolor=\"#faf ca3\">");

printData(); /I Print the Personal and the security data
OUL.PHNEIN(" et e sreeeneas "+ "<pr>\n");

/I savethefileto the secure server area

try
out.printn("* Saving thefileto the secure server area” +
"
\n"); Hle)
COpYHI€&) ;
out.printin(" Saving thefilewas successful" +"
\n");
}

catch(IOException)

out.printin(" ******* Error when copying thefile
kkkkkhkkkhkkkhkkkhkxk" + "
\n");
out.printin(* Please trying again later or call asystem afdmin™ +

"
\n");
exitLinks() ;
[/ update the database
OUL.PHINEN(" e "+ "
\n");
out.printin(" Updating Databaseccccovvvvenene. " +"<pr>\n");

openConnection() ;
boolean successUpdate = updateDatabase() ;

if(successUpdate)
out.printin("............... updating database was successful” +"
\n");

[lupdate the available files for that user
Vector oldAvaFiles= newuser.getAvaFiles() ;
oldAvaFiles.add(fina Filename) ;
newuser.setAvaFiles(oldAvaFiles) ;

}

else

{

*kkkkkkkkkk! 4 "
\nu).

out.println(" ******** Error while updating database

out.printin(" Pleasetrying again later or call asystem afdmin" +

"
\n");
exitLinks() ;
}
exitLinks() ;
out.printin("</body></html>");
}// doPost ends here
/**

249

* Updates the database with the new file's
* data and metadata
* @return A boolean variableisreturned to verify
* the success of the procedure
*/
private boolean updateDatabase()
{

boolean success = false;

/I Get anew primary key
dbBean.setPrimaryKeyQuery("SELECT ID FROM File ORDER BY ID");
int nextKey = dbBean.getPrimaryKey() ;

if(nextKey 1= -1)

fieldld = dbBean.update(
"INSERT INTO File" +
"VALUES(" + nextKey +" " + newuser.getServiceName() + ™ " +
""" + newuser.getServicePos() +")+

""" + desiredClass +M N+

""" + newuser.getCountryld() +")+
"+ "Yes" +" ," +
" +"Yes' +" "+
"4+ "Yes! +" ," +
""" + finalFilename +"));
success = true;

}

ese

{
System.out.printin(" ERROR getting the primary key ") ;

return success;;

} I end of updateDatabase

/**

* Copiesthefilefrom the temporary server areato
* thesimulated permanent secure area
* @return void.
* @exception |OEXception In case of al/O error encountered
*/
private void copyFile() throws |OException

/I create the find filename
createFinalFilename() ;

I the URI of the temporary file to read
String tempkile = System.getProperty("user.dir")
+ " webapps/metadata/xml/temporary/"
250

/**

+ newuser.getUserID() +"temp -1.xml"

/I the URI to writethefile
String finalFile = createUserDirectory()

+ System.getProperty(“file.separator”)
+ finalFilename ;

FileinputFile = new File(tempFile);
File outputFile = new File(finaFile);

FileReader in = new FileReader(inputFile);
FileWriter out = new FileWriter(outputFile);
intc;

while ((c=in.read()) != -1)
out.write(c);

in.close();
out.close();

* Createsthefinal filename that thefilewill getin

*

order to be saved, by adding the date and the time

* @return void.

*/

filename ;

/**

private void crestefinal Filename()

{
Calendar cal = new GregorianCalendar();
int year = ca.get(Cadendar.YEAR);
int month = cal.get(Cdendar. MONTH) + 1; // months start from 0
int day = cal.get(Calendar.DAY_OF MONTH);
int hour = cal.get(Cdendar. HOUR_OF DAY);
int minute = cal.get(Calendar.MINUTE);
int second = cal.get(Caendar.SECOND);

finaFilename=year +"~" + month +"~" +day +"~"+
hour +"~" + minute + "~" + second + "~" +

* Creates anew directory according to user'sclassification

*

in casethereisnot oneyet

* @return The newly created directory
* @exceptl on SecurityException In the case of the creation is not

*/

allowed by the security manager

private String createUserDirectory() throws SecurityException
251

boolean userDirCreated ;

File userDir = new File(System.getProperty(“user.dir”) +
" lwebapps/metadata/xml/* +

desiredClass) ;
/Iif itisNOT aready existsthen createit
if('userDir.isDirectory()) userDirCreated = userDir.mkdir() ;
return userDir.toString() ;
}
[r

* Opens a connection with the database to retrieve
* the availablefiles of thisuser

*

* @return void

*/
private void openConnection()
{
dbBean =
(DBConnectionBean)getServletContext().getAttribute(" connectionBean');
if (dbBean == null)

dbBean = new DBConnectionBean(); // for the connection module
dbBean.setDriver("sun.jdbc .odbc.JdbcOdbcDriver™);
dbBean.setUrl("jdbc:odbc:UserDB");

dbBean.setUser("paulo");

dbBean.setPassword("silva’);

/I Load the driver
if('dbBean.isLoaded())

System.out.println("#HaH#HEHHIHE#EH driver error #HHARBHHERE =") |
}
}

this.dbBean = dbBean;

getServietContext().setAttribute(* connectionBean", dobBean);
}

/* *
* Prints the user's personal and Security data
252

* retrieved from the database that contained
* in the UserBean object
* @returnvoid.

*/
private void printData()
{
out.printin("<h3>" +" Persona Data" +"</h3>");
out.printin("Last Name :" + " & hbsp " +
newuser.getl astName() + "
\n"
+

"First Name:" +" & nbsp " +
newuser.getFirstName() + "
\n");

out.println("" +" Security Attributes (presented here only for
demo)" + "
\n");

out.printin(" ServiceName :" +" "

+ newuser.getServiceName() + "
\n" +
" Service Pogition:" + " & nbsp;& nbsp " +
newuser.getServicePos() + "
\n" +

" Service Classification:”" + " & nbsp;& nbsp "+
newuser.getServiceClasy() + "
\n" +
" Country ID:" + " & nbsp " +
newuser.getCountryld() + "
\n")

/**

* Displaysthe available linksto direct the control
* in another servlet, in casethe user
* wantsto cancel this procedure
* @return void.
*/
privatevoid exitLinks()
{

out.println("

\n");

out.printin("<ahref="" + res.encodeURL ("/metadata/html/login.htm")

+"'>" +"|ogin again as another user "+ "" +
n or ll+ Il
\nll);

out.printin("<ahref=" + res.encodeURL ("UserOptions")

+"'>" +" seeagain your options'+ "" +
"<bl’>\n");

}// UserSelection classends here

253

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)

* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002
Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

package dbsection ;

import java.util.* ;

import dbsectio n.*;

/**

* Thisclass defines abean used to maintain user's
* data during the session.

* @author Panos

*/

public class UserBean

{

// Datamembers
privateint userlD;

private String firstName;
private String middlelnitial;
private String lastName;
private String street;
private String city;
private String zip;

private String state;
private String phone;
private String loginName;
private String password;
private String email;

private String serviceName; /I CIA,NSA, ARMY

private String servicePos; /l SUser, QUser, Admin, SuperAdmin
private String serviceClass, /TS, SE, CL,UN

private String country!d;

private Vector avaFiles,

/**

* The default constructor initializes anew
* object by calling the getReset() method
*/

public UserBean()

{

254

/I nitialize propertiesto avalid state
getReset();
}
/**
* Resetsall fields by creating new empty objects
* @return An empty String
*/
public String getReset()

userlD =-1;

firstName = new String(" ");
middlelnitial = new String(" ");
lastName = new String(" ");
street = new String(" ");

city = new String(" ");
Zip=new String(" ");

state = new String(" ");
phone = new String(" ");
loginName = new String(" ");
password = new String(" ");
email =new String(" ");

serviceName = new String(" *);
servicePos =new String(" ");
sarviceClass = new String(" ");
countryld = new String(" ");

avaFiles= new Vector();

return"";

}

/**

* Getsuser's|D

* @return the user'sID
*

?u/blic int getUserID()

return userlD;

}

/**
* Setsuser D with anew value
* @param newUser|D the new userlD
* @return void
*/
public void setUserl D(int newUserI D)
{
userlD = newUsrID;

}
255

/**

* Getsusar'sfirst name

* @return the user'sfirst name
*/

public String getFirstName()

return firstName;

}
/**

* Setsuser'sfirst namewith anew value

* @param newFirstName The new first name

* @return void

*/
public void setFirstName(String newFirstName)
{

firsstName = newFirstName;

}
/**

* Getsuser'smiddleinitial

* @return the user'smiddle initia
*/

public String getMiddlelnitial ()
{

return middlelnitial;
}

/**

* Setsuser'smiddleinitial with anew value

* @param newFirstName The new middleinitial

* @return void

*/

public void setMiddlel nitial (String newMiddlel nitial)

middlelnitia = newMiddlelnitid;
}
/**
* Getsuser'slast name
* @return the user'slast name
*/
public String getL astName()

return lastName;

}
/**

* Setsuser'slast name with anew value
* @param newFirstName The new last name

256

* @return void

*/

public void setlL astName(String newL astName)
{

|lastName = newL astName;

}

/**

* Getsuser'sfull name name (first + middle + last)
* @return the user'sfull name

*/

public String getFullName()

{

return (getFirstName() + " * + getMiddlelnitia () + *. " + getLastName());
}
/**
* Setsuser's street name with anew value
* @param newFirstName The new street name
* @return void
*/
public void setStreet(String newStreet)

street = newStreet;
}

/**

* Setsuser'scity namewith anew value

* @param newFirstName The new city name
* @return void

*/

public void setCity(String newCity)

{

city = newCity;;
}

/**

* Setsuser's zip code with anew value
* @param newFirstName The new zip code
* @return void

*/
public void setZip(String newZip)
{
Zip = newZip;
}
/**

* Setsuser's state with anew value
* @param newFirstName The new state
* @return void
*/
257

public void setState(String newState)
{
state = newState;

}

/* *

* Setsuser's phone number with anew value

* @param newFirstName The new phone number
* @return void

*/

public void setPhone(String newPhone)

{

phone = newPhone;

}

/**

* Setsuser'slogin name with anew value

* @param newFirstName The new login name

* @return void

*/

public void setloginName(String newL oginName)

loginName = newL oginName;
}
/**
* Setsuser's password with anew value
* @param newFirstName The new password
* @return void
*/
public void setPassword(String newPassword)
{

password = newPassword;

}
/**

* Setsuser'semail addresswith anew value

* @param newFirstName The new email address
* @return void

*/

public void setEmail (String newEmail)

email = newEmail;

}
/**

* Setsuser's service name with anew value

* @param newFirstName The new service name

* @return void

*/

public void setServiceName(String newServiceName)
258

{

serviceName = newServiceName;
}
/**
* Sets user's service position with anew value
* @param newFirstName The new service position
* @return void
*/
public void setServicePos(String newServicePos)
{
servicePos = newServicePos,
}

/**
* Sets user's service classification with anew value
* @param newFirstName The new service classification
* @return void
*/
public void setServiceClass(String newServiceClass)
{
serviceClass = newServiceClass,
}

/**

* Setsuser's country ID with anew value

* @param newFirstName The new country ID
* @return void

*/

public void setCountryld(String newCountryl d)

{
countryld = newCountryld;

}

/**
* Setsuser'savailablefileswith anew value

* @param newFirstName The new availablefiles
* @return void

*/
public void setAvaFiles(Vector newAvaFiles)
{
avaFiles= newAvaFiles,
}
/**

* Getsuser's street
* @return the user's street
*/
public String getStreet()
{
return street;

259

}

/**

* Getsuser'scity name

* @return the user's city name
*/

public String getCity()

{

return city;

/**

* Getsuser'szip

* @return the user's zip
*/

public String getZip()

{

return zip;

}

/**

* Getsuser's state

* @return the user's state
*/

public String getState()

{
return state;

}
/**

* Gets user's phone number

* @return the user's phone number
*/

public String getPhone()

{

return phone;

}

/**

* Getsuser'slogin name

* @return the user'slogin name
*/

public String getL oginName()

{

return loginName;

}

/* *
* Gets user's password
* @return the user's password
*/
public String getPassword()
260

{

return password;

}

/**

* Getsuser's email address

* @return the user's email address
*/

public String getEmail()

{

return email;

}
/**

* Getsuser's service name

* @return the user's service name
*/

public String getServiceName()

{

return serviceName;

}

/* *

* Gets user's service position

* @return the user's service position
*/

public String getServicePos()

{

return servicePos ;

}

/**

* Getsuser's service classification

* @return the user's service classification
*/

public String getServiceClass()

{

return serviceClass;;

}
/**

* Getsuser's country 1D

* @return the user's country 1D
*/

public String getCountryld()
{

return countryld ;
}
/**
* Getsuser'savailablefiles stored in theobject
261

* @return the user's availablefiles
*/

public Vector getAvaFiles()

{

return avaFiles;

}

/**

* Getsuser's personal dataall inaString

* @return the user's personal data

*/

public String toString()

{
String str = new String("User Personal datais\n®*);
sr+="UserID =\t"+useID +"\n";
str +="First Name = \t" + firssName + "\n";
str +="Mid initial= \t" + middlelnitial +"\n";
str +="Last name = \t" + [astName + "\n";
str+="Street =\t" + street +"\n";
str+="City =\t"+city +"\n";
str+="Zip =\t"+zip+"\n";
str+="State = \t" +gate+"\n";
str+="Phone =\t"+phone+"\n";
str +="Login name = \t" + loginName + "\n";
str +="Password = \t" + password +" \n";

sr+="Email =\t"+email +"\n";
return str;

}

/**

* Gets user's security dataall inaString

* @return the user's security data

*/

public String secString()

{
String str = new String("User Security dataisi\n");
str +="UserID =\t" + userlD +"\n";
str+="SeviceName = \t" + serviceName+ "\n";
str +="Service Position = \t" + servicePos+ " \n*;
str +="Service Classif. = t" + serviceClass+ "\n";
str+="Country Id =\t" + countryld + "\n";

return str;

} /1 End of UserBean class

262

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags

* Author : Magjor (HAF) Aposporis Panagiotis (Panos)
* Advisor : Ted Lewis, Ph.D.

* 2nd Advisor : Tim Levin

* Date : December 2002

dhhkhkhkkhkhkkhkhkhkhkhkhhkhkhkhkhhkhkhhhkdhkhhhhkhhkhkhhkhhhhkhhkdhhhhhhhhhkdhkhhhhkkhhkhdhkhkhhhhhkkhkdxkhx

*/
packagedbsection;

import javax.serviet.*;
import javax.servlet.http.*;
import java.io.*;

import java.util.* ;

/**

* The class UserOptions creates a page displaying the
* user'sinformation (personal and security) and

* the available optionsfor that session. After

* the user's sel ection passthe control to the next

* UserSelection servlet

* @author Panos

*/
public class UserOptions extends HttpServlet
{

// DataMembers

private UserBean newuser ;

private Vector avaFiles;
private PrintWriter out ;

/**

* Processing user's GET request.

* @param req the client request.

* @param resthe responseto client.

* @returnvoid.

* @exception ServletException In case of aservlet error encountered
* @exception | OEXception In case of al/O error encountered

*/
public void doGet(HttpServletRequest reqg, HitpServletResponse res)

throws | OException

/I get the session object from the previous serviet
HttpSession session = req.getSession(true);

I get now the UserBean object from the session
newuser = (UserBean) session.getAttribute("user");

263

String mess = newuser.getFirstName() ;

/I Setsthe content type to html text
res.setContentType("text/html™);

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

/IGeneratesthetitle

out.printin(" <html><head><title>");
out.printin("User Options");
out.printin("</title></head>");

/IGenerates the body
out.printIn("<body bgcolor=\"#fafca3\">");

/I Print the Personal and the security data
printData();

/I Generatesthe form to select an option

out.println("<form action="UserSel ection' method="POST" > ");
printOptions();

out.printIn("</form>");

out.println("<ahref="" + res.encodeURL ("'/metadata/htmi/lo gin.htm™)
+"'>" +"|ogin again as another user "+ "" +
"
\n");

out.println("</body></html>");

}// doGet ends here

/* *

* Prints the user's personal and Security data

* retrieved from the database that contained
* in the UserBean object

* @return void.

*/

private void printData()
{
out.printin("<h3>" +" Persona Data" +"</h3>");
out.printin("Last Name :" + " & nbsp " +
newuser.getl astName() + "
\n"

+
"First Name:" + " & nbsp;& nbsp " +
newuser.getFirstName() + "
\n");
out.printin("" +" Security Attributes (presented here only for
demo)" +
"
\n");
out.printin(" ServiceName :" + " & nbsp "
+

264

</p>");

newuser.getServiceName() + "
\n"

+
" Service Pogition:" + "& nbsp;& nbsp "
+
newuser.getServicePos() + "
\n"
+
" Service Classification:" + " & nbsp "+
newuser.getServiceClass() + "
\n"
+
" Country ID:" + " & nbsp "
+
newuser.getCountryld() + "
\n"
);
}
/*-k

* Createsadrop down list that presents
* the user's available options.
* @return void.
*/
private void printOptions()
{
[l insert ahorizontal line
out.printin("<hr/>");

out.printin("Y our optionsare...." + "
\n");

out.printin(" <p><select sze='1' name="FileMenu>");
out.printin(* <option>Import to Save</option> ");
out.printin(* <option>Open from Database</option> ");
out.printin(* <option>Import from Other Server</option> ");
out.printin(" <option>Logout </option> ");

out.printin(" </select></p> ")

out.printin(* <p><input type="submit' value="Submit' name="B1">

}

}/ UserOptionsclassends here

265

/*

Khhkkhkkkkkkkhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhdhhhhhhdhhrhhhhhhihird

* Mader Thesis : Metadata Security Label Tags
* Author : Magjor (HAF) Aposporis Panagiotis (Panos)
* Advisor : Ted Lewis, Ph.D.
* 2nd Advisor : Tim Levin
* Date : December 2002
Khkhkkhkkhkkhkkhkkkhkhkhkkhkkhkhkhkhkhkhkhkhhhhhhkhhhhhhhhhhhhhhhhdhhhhhhhhhhhhhhhhhhhhhkhhxx

*/

packagedbsection;

import javax.serviet.*;

import javax. servlet.http.*;

import java.io.*;

import java.util.* ;

/**

* The UserSelection classis responsible to get the
* user's selection from the main menu and to redirect
* the control to the respective servlet for
* further processing
* @author Panos
*/
public class UserSel ection extends HttpServiet
{

/I DataMembers
private HitpServletRegquest reg;
private HttpServletResponseres;

private UserBean freshuser ;
private Vector avaFiles;

private PrintWriter out ;

private String nextServlet ;
private String FileMenu;

/**

* Processing user's GET request by simply passing

* the control to the doPost.

* @param request The client's request.

* @param response The response to the client.

* @return void.

* @exception ServletException In case of aservlet error encountered
* @exception |OEXception In case of al/O error encountered

*/

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, |OException

/I Simply pass pass control to doPost()
266

this.doPost(request, response);
return;
} // end of doGet

/* *

* Processing user's POST request.

* @param req the client request.

* @param resthe responseto client.

* @returnvoid.

* @exception ServletException In case of aservlet error encountered

* @exception | OEXception In case of al/O error encountered
*/

public void doPost(HttpServietRequest req, HitpServletResponse res)
throws | OException

{
/I nitidlization

this.req =req;
thisres=res;

/I get the session object from the previous servlet
HttpSession session = req.getSession(true);

/I get now the UserBean object from the session
freshuser = (UserBean) session.getAttribute("user");

/1 Get the user selection from the request
FileMenu = reg.getParameter("FileMenu'");

/I Setsthe content typeto html text
res.setContentType("text/html");

/I Getsthe PrintWriter object for sending HTML commands
out = res.getWriter();

/IGeneratesthetitle
out.printin("<html><head><title>");

out.println("</title></head>");

//Generates the body
out.printin("<body>");

nextServlet ="/OpenfFile” ;

if (FileMenu.equas("Import to Save"))
{

nextServiet ="/ImportToSave" ;

}
dseif (FileMenu.equa s("Open from Database"))

{
267

nextServiet ="/OpenFile?sd File=" + "start” ;

}
elseif (FileMenu.equals("Import from Other Server"))

{
nextServlet ="/ImportFile" ;

}
dseif (FileMenu.equals("Logout”))

{
nextServiet ="/Logout” ;

}
try
{ . .
continueSession() ;
catch(Exception €)
{
out.printin("Sorry ! The Exception™ + e+ " thrown" + "
\n");
}
out.printin("</body></html>");
}// doPost endshere
/**
* Continue the session and pass
* the control to the next servlet.

* @return void.

* @exception Exception. In case an invalid situation is encountered
*/

private void continueSession() throws Exception

{

/1 Get the dispatcher

RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher(nextServlet);

if (dispatcher == null)

{

/I No dispatcher means the given file could not be found
dispatcher = getServletContext().getRequestDispatcher("/UserOptions');
}

else

// Pass control to adifferent page
dispatcher.forward(req, res);

}
} // end of continueSession()

}/ 1 UserSel ection class ends here

268

LIST OF REFERENCES

[1] Abrams M.D., Jgodia S., and Podell H. J, Information Security: An Integrated
Collection of Essays, IEEE Computer Society Press.

[2] Brown Associates, Inc., Database Trade-offs for IMBM and Oracle: Availahility,
Scalahility, and Performance,” D.H. Associates, Inc., Sep 2001

[3] Deitel, H. M., and Deitdl, P. J., Java How to Program, 3" Edition, Prentice Hall Inc.,
1999.

[4] Deitel, H. M., Deitel, P. J,, and Nieto, T. R., Internet and The World Wide Web: How
to Program, 2™ Edition, 2002.

[5] Grohn, M. J, A Model of a Protected Data Management System, |.P. Sharp
Associates, Jun 1976.

[6] Hinke, T. H., and Schaefer M., Secure Data Management System, Technical Report,
System Development Corp., Nov 1975.

[7] Ibrahim Z., Mastering the Internet and HTML , 1% Edition, Prentice Hall Inc., 2000.

[8] Intelligence Community, Intelink Management Office, Draft Release 0.8,
“Intelligence Community Metadata Standard for Publications, Data Element
Dictionary,” by the Intelligence Community Metadata Working Group, 6 May 2002.

[9] Intelligence Community, Intelink Management Office, Working Draft, Configuration
Management Guide, by the Intelligence Community Metadata Working Group, 27 Sep
2002.

[10] Kal Ahmet, and others, Professional XML Metadata, 1% Edition, Wrox Press Ltd,
2001.

[11] XML Complete, I Edition, SYBEX Inc, 2002.

[12] Kely M., “Guidelines for Intelink Metadata Version 1.0,” paper presented at
Intelink Conference, Newport, RI, Jul 1997.

269

[13] Kurose J. F., and Ross K. W., Computer Networking, 1% Edition, Addison Wesley
Longman, Inc., 2001.

[14] Li Gong, “Inside Java 2 Platform Security: Architecture, APl Design, and
Implementation,” Addison Wedley, 1999

[15] Martin B., “An Introduction to the Extensible Markup Language (XML),”

[http://www.personal.u-net.com/~sgmi/xmlintro.htm]

[16] Marty Hall, Core Serviets and Java Server Pages, 1% Edition, Prentice Hall Inc.,
2000.

[17] Microsoft Corporation, “ .NET Framework Developer's Guide, .NET Framework
Security,” [http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cpguide/html/cpconnetframeworksecurity.asp], 2001.

[18] Microsoft Corporation, Project 42 “An Overview of Security in the .NET
Framework,” Dr. Demien Watkins, Jan 2002

[19] Microsoft Corporation, “XML Web Services Security,”
[http://msdn.microsoft.comVlibrary/default.asp?url=/library/en -us/dnwssecur/html
Ixmlwssec.asp], Feb 2002

[20] Parnas, D. L., On the Criteria to Be Used in Decomposing Systems into Modules,
Comm. ACM, Val. 15, Dec 1972

[21] PASS Consulting Group, Version 2.0, “IBM DB2 UDB V7.2 and Oracle 9i, A
Technica Comparison,” Bloemen J., and others, Frankfurt, 06/09/2001.

[22] Rg Mohan, “XML Based Adaptive IPSec Policy Management in a Trust
management Context,” Master of Science Thesis, Department of Computer Science,
Navad Postgraduate School, Dec 2002.

[20] Schafer, M., Multilevel Data Management Security, Air Force Studies Board,
Committee on Multilevel Data Management Security, National Academy Press,
Washington, D.C., 1983

[23] Refsnes J. E., “Introduction to XML-XSL,”

[http://www.xmlfiles.com/xsl/xsl intro.asp]
270

[24] Science Application International Corporation, Intelligence Community Extensible
Markup Language (XML) Final Report, by Science Application International Corporation
XML Study Team, 3 Nov 1999,

[25] Science Application International Corporation, Intelligence Community Extensible
Markup Language (XML) Prototype System Design Document, by Science Application
International Corporation Applied Content Technologies Team under the directions of the
Office of Advanced Analytical Tools, Centra Intelligence Agency, UNCLASSIFIED,
Revised 28 Aug 2002.

[26] Science Application International Corporation, Intelligence Community Extensible
Markup Language (XML) Prototype Overview, by Science Application Internationa
Corporation XML Study Team, 6 Aug 1999.

[27] Science Application International Corporation, Intelligence Community Extensible
Markup Language (XML) Prototype Demonstration Scripts, by Science Application
International Corporation XML Study Team, 30 Sep 1999.

[28] Scott Oaks, “Java Security,” 2™ Edition, O'Reilly & Associates, Inc., May 2001

Siedschlag M., “ Intelligence Community XML -DTD for Security Markings,” presented at
Intelink Conference, Sep 2000.

[29] Silberschatz A., Korth H. F., and Sudarshan S., Database System Concepts, 4"
Edition, McGraw-Hill Companies Inc., 2002

[30] Srinivas R. N., “Java Security Evolution and Concepts, Part 2,”
[http:/iww.javaworld.com/javaworl d/jw -07-2000/jw -0728-security.html] , Jul 2000

[31] SOAP 1.1 Specifications, [http://mwww.w3.org/TR/SOAP/] W3C Note 08 May 2000.

[32] Sun Microsystems, Inc, Java 2 Standard Edition, V1.2.2 APl Secification,

[http://java.sun.com/products/jdk1.2/docs/api/], Sun Microsystems, Inc., 1999.

[33] Sun Microsystems, Inc, The Java™ Web Services Tutorial,
[http://java.sun.com/webservices/docs/1.0/tutorial/] Sun Microsystems, Inc., 2002.

[34] Sun Microsystems, Inc, “ Java™ Security,” [http:/java.sun.com/security/] Jul 2002

271

[35] Wu C. Thomas, An Introduction to Object-Oriented Programming with Java, 2°
Edition, McGraw-Hill Companies Inc., 2000.

[36] XML Specification, http://www.w3.0rg/TR/2000/REC-xml-20001006, Aug 2002
[37] XML Schema Specifications, http://www.w3.org/TR/xmlschema-0, Aug 2002
[38] XML Namespace Recommendation, http://www.w3.org/TR/REC-xml-names/
[39] XSLT Specifications, http://www.w3.org/TR/xdt, Aug 2002 RFC2396

[40] Zukowski J., “Exploring the Security Changes of the 1.4 Release of the Java TM 2
Patform Standard Edition (2SETM),” Apr 2002

272

10.

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvair, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Commander, Naval Security Group Command
Nava Security Group Headquarters
Fort Meade, Maryland

Deborah M. Cooper
Intelligence Community ClIO Office
Washington DC

Audrey Marsh
Intelligence Community CIO Office
Washington DC

William Dawson
Intelligence Community CIO Office
Washington DC

Richard Hale
Defense Information Systems Agency, Suite 400
Fdls Church, Virginia

CynthiaE. Irvine

Computer Science Department, Code CS/1C
Naval Postgraduate School

Monterey, California

Timothy Levin

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, California

Ted Lewis

Computer Science Department, Code CS
Naval Postgraduate School

Monterey, California

273

11.

12.

13.

Capt Robert Simera
Security Officer

Naval Postgraduate School
Monterey, California

Air Attaché
Embassy Of Greece,
Washington DC

Hellenic Air Force Genera Staff
Education Branch
Athens — Greece

274

